返回

高中三年级数学

首页
  • 解答题
    已知函数满足f(2)=1,且方程f(x)=x有且仅有一个实数根.
    (Ⅰ)求函数f(x)的解析式;
    (Ⅱ)设数列{an}满足a1=l,an+1=f(an)≠l,n∈N*,求数列{an}的通项公式;
    (Ⅲ)定义,对于(Ⅱ)中的数列{an},令,设Sn为数列{bn}的前n项和,求证:Sn>ln(n+1).
    本题信息:2011年浙江省模拟题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知函数满足f(2)=1,且方程f(x)=x有且仅有一个实数根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)设数列{an}满足a1=l,an+1=f(an)≠l,n∈N*,求数列{an}的通项公式;(Ⅲ)定义...” 主要考查您对

函数解析式的求解及其常用方法

一般数列的通项公式

反证法与放缩法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数解析式的求解及其常用方法
  • 一般数列的通项公式
  • 反证法与放缩法

函数解析式的常用求解方法:

(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。


一般数列的定义:

如果数列{an}的第n项an与序号n之间的关系可以用一个式子表示成an=f(n),那么这个公式叫做这个数列的通项公式。


通项公式的求法:

(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:
①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数λ,使an+1 +λ=q(an+λ)进而得到λ。
②已知a1=a,an=an-1+f(n)(n≥2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。
③已知a1=a,an=f(n)an-1(n≥2),求an时,利用累乘法求解。


反证法的定义:

有些不等式无法利用题设的已知条件直接证明,我们可以用间接的方法——反证法去证明,即通过否定原结论——导出矛盾——从而达到肯定原结论的目的。

放缩法的定义:

把原不等式放大或缩小成一个恰好可以化简的形式,比较常用的方法是把分母或分子适当放大或缩小(减去或加上一个正数)使不等式简化易证。


反证法证题的步骤:

若A成立,求证B成立。
共分三步:
(1)提出与结论相反的假设;如负数的反面是非负数,正数的反面是非正数即0和负数;
(2)从假设出发,经过推理,得出矛盾;(必须由假设出发进行推理否则不是反证法或证错);
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.矛盾:与定义、公理、定理、公式、性质等一切已有的结论矛盾甚至自相矛盾。
反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。

放缩法的意义:

放缩法理论依据是不等式的传递性:若,a<b,b<c,则a<c.

放缩法的操作:

若求证P<Q,先证P<P1<P2<…<Pn,再证恰有Pn<Q.
需注意:(1)只有同方向才可以放缩,反方向不可。
(2)不能放(缩)得太大(小),否则不会有最后的Pn<Q.


发现相似题
与“已知函数满足f(2)=1,且方程f(x)=x有且仅有一个实数根.(Ⅰ)求...”考查相似的试题有: