返回

高中三年级数学

首页
  • 填空题
    若半径为R的球与正三棱柱的各个面都相切,则球与正三棱柱的体积比为(    )。
    本题信息:2011年山东省模拟题数学填空题难度一般 来源:张玲玲
  • 本题答案
    查看答案
本试题 “若半径为R的球与正三棱柱的各个面都相切,则球与正三棱柱的体积比为( )。” 主要考查您对

柱体、椎体、台体的表面积与体积

球的表面积与体积

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 柱体、椎体、台体的表面积与体积
  • 球的表面积与体积

侧面积和全面积的定义:

(1)侧面积的定义:把柱、锥、台的侧面沿着它们的一条侧棱或母线剪开,所得到的展开图的面积,就是空间几何体的侧面积.
(2)全面积的定义:空间几何体的侧面积与底面积的和叫做空间几何体的全面积, 

柱体、锥体、台体的表面积公式(c为底面周长,h为高,h′为斜高,l为母线)

柱体、锥体、台体的体积公式:




多面体的侧面积与体积:

多面体 图像 侧面积 体积
棱柱
直棱柱的侧面展开图是矩形
棱锥
正棱柱的侧面展开图是一些全等的等腰三角形,
棱台
正棱台的侧面展开图是一些全等的等腰梯形,
  

旋转体的侧面积和体积:

旋转体 图形 侧面积与全面积 体积
圆柱
圆柱的侧面展开图的矩形:
圆锥
圆锥的侧面展开图是扇形:
圆台
圆台的侧面展开图是扇环:

球的体积公式:

V=

球的表面积:

S球面=


求球的表面积和体积的关键:

由球的表面积和体积公式可知,求球的表面积和体积的关键是求出半径。


常用结论:

1.若球的表面积变为原来的2倍,则半径变为原来的倍.
2.若球半径变为原来的2倍,则表面积变为原来的4倍.
3.若两球表面积之比为1:2,则其体积之比是.
4.若两球体积之比是1:2,则其表面积之比是.


发现相似题
与“若半径为R的球与正三棱柱的各个面都相切,则球与正三棱柱的体...”考查相似的试题有: