返回

高中数学

首页
  • 解答题
    已知等比数列{an}的前n项和为Sn=(
    1
    3
    )n-c
    ,正数数列{bn}的首项为c,且满足:bn+1=
    bn
    1+2bn
    (n∈N*)
    .记数列{bnbn+1}前n项和为Tn
    (Ⅰ)求c的值;
    (Ⅱ)求数列{bn}的通项公式;
    (Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知等比数列{an}的前n项和为Sn=(13)n-c,正数数列{bn}的首项为c,且满足:bn+1=bn1+2bn(n∈N*).记数列{bnbn+1}前n项和为Tn.(Ⅰ)求c的值;(Ⅱ)求数列{bn}...” 主要考查您对

等比数列的定义及性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等比数列的定义及性质

等比数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。


等比数列的性质:

在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2
(2)若m,n∈N*,则am=anqm-n
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。


等差数列和等比数列的比较:
 

如何证明一个数列是等比数列:

证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。