本试题 “下列四个命题:①f(a)f(b)<0为函数f(x)在区间 (a,b)内存在零点的充分条件;②命题“若x2<1,则-1<x<1”的否命题是“若x>1或x<-1,则 x2>1”;③正弦...” 主要考查您对真命题、假命题
函数的零点与方程根的联系
绝对值不等式
线性回归分析
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
命题的概念:
1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:
1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
函数零点的定义:
一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。
函数零点具有的性质:
对于任意函数y=(x)只要它的图象是连续不间断的,则有:
(1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.
(2)在相邻两个零点之间所有的函数值保持同号,
方程的根与函数的零点的联系:
方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点
绝对值不等式:
当a>0时,有;
或x<-a 。
回归直线:
如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线;
最小二乘法:
使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法。
回归直线方程:
,
其中。
回归分析是处理变量相关关系的一种常用数学方法,其步骤为:
(1)确定特定量之间是否有相关关系,如果有,那么就找出他们之间贴近的数学表达式;
(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;
(3)求出回归直线方程。
与“下列四个命题:①f(a)f(b)<0为函数f(x)在区间 (a,b)...”考查相似的试题有: