本试题 “设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一个动点,与x轴正方向的夹角为60°,求||的值.” 主要考查您对向量模的计算
直线与抛物线的应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
向量的模:
设,则有向线段的长度叫做向量的长度或模,记作:,则 。
向量模的坐标表示:
(1)若,则;
(2)若,那么。
求向量的模:
求向量的模主要是利用公式来解。
设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。
直线与抛物线的位置关系:
直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如:
与“设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上...”考查相似的试题有: