返回

高中数学

首页
  • 填空题
    给出下列结论
    ①函数f(x)=sin(2x+
    π
    2
    )是奇函数;
    ②某小礼堂有25排座位,每排20个,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是系统抽样方法;
    ③一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“两次都不中靶”互为对立事件;
    ④若数据:xl,x2,x3,…,xn的方差为8,则数据x1+1,x2+1,x3+1,…,xn+1的方差为9.
    其中正确结论的序号______(把你认为正确结论的序号都填上).
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “给出下列结论①函数f(x)=sin(2x+π2)是奇函数;②某小礼堂有25排座位,每排20个,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15...” 主要考查您对

真命题、假命题

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

系统抽样

标准差、方差

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
  • 系统抽样
  • 标准差、方差

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。


系统抽样的概念:

当整体中个体数较多时,将整体均分为几个部分,然后按一定的规则,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。


系统抽样的步骤:

(1)采用随机方式将总体中的个体编号;
(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足是整数;
(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;
(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。


方差和标准差的定义:

考察样本数据的分散程度的大小,最常用的统计量是标准差。标准差是样本数据到平均数的一种平均距离,一般用s表示。
设一组数据的平均数为,则,其中s2表示方差,s表示标准差。


一般地,平均数、方差、标准差具有如下性质:

若数据的平均数是,方差为s2,标准差为s.则新数据的平均数是a+b,方差为,标准差为
特别地,如a=1,则新数据的方差、标准差与原数据相同,分别为s2,s。因此,当一组数据均较大且接近某个常数时,可先将每个数同时减去这个常数,再计算这组新数据的方差,它与原数据的方差相等.


方差和标准差的意义:

方差和标准差都是用来描述一组数据波动情况的特征数,常数来比较两组数据的波动大小,方差较大的波动较大,方差较小的波动较小。

用样本的数字特征估计总体的数字特征分两类:

①用样本平均数估计总体平均数.
②用样本方差、标准差估计总体方差、标准差.样本容量越大,估计就越精确.

计算标准差的算法:

(1)算出样本数据的平均数;
(2)算出每个样本数据与样本平均数的差;
(3)算出
(4)算出这n个数的平均数,即为样本方差s2
(5)算出方差的算术平方根,即为样本标准差s.


发现相似题
与“给出下列结论①函数f(x)=sin(2x+π2)是奇函数;②某小礼堂有...”考查相似的试题有: