返回

高中三年级数学

首页
  • 解答题
    设函数f(x)=x2-1+cosx(a>0),
    (1)当a=1时,证明:函数y=f(x)在(0,+∞)上是增函数;
    (2)若y=f(x)在(0,+∞)上是单调增函数,求正数a的范围;
    (3)在(1)的条件下,设数列{an}满足:0<a1<1,且an+1=f(an),求证:0<an+1<an<1。
    本题信息:2011年模拟题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “设函数f(x)=x2-1+cosx(a>0),(1)当a=1时,证明:函数y=f(x)在(0,+∞)上是增函数;(2)若y=f(x)在(0,+∞)上是单调增函数,求正数a的范围;(3)在(1)的条件下,...” 主要考查您对

函数的单调性与导数的关系

一般数列的项

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系
  • 一般数列的项

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


一般数列的项的定义:

数列中的每一个数叫做这个数列的项。


数列项的性质:

①数列的项具有有序性,一个数列不仅与构成数列的“数”有关,而且与这些数的排列顺序有关,注意与集合中元素的无序性区分开来,;
②数列的项具有可重复性,数列中的数可重复出现,这也要与集合中元素的互异性区分开来:
③注意an与{an}的区别:an表示数列{an}的第n 项,而{an}表示数列a1,a2,…,an,…,


方法提炼:

1.数列最大项、最小项、数列有界性问题可借助数列的单调性来解决,判断单调性时常用(1)作差法;(2)作差法;(3)结合函数图像等方法;
2.若求最大项an,则an满足an≥an+1且an≥an-1;若求最小项an,则an满足an≤an+1且anan-1。


发现相似题
与“设函数f(x)=x2-1+cosx(a>0),(1)当a=1时,证明:函数y=f(x)...”考查相似的试题有: