返回

高中数学

首页
  • 解答题
    设A是三角形的内角,且sinA和cosA是关于x方程25x2-5ax-12a=0的两个根.
    (1)求a的值;
    (2)求tanA的值.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “设A是三角形的内角,且sinA和cosA是关于x方程25x2-5ax-12a=0的两个根.(1)求a的值;(2)求tanA的值.” 主要考查您对

函数的零点与方程根的联系

同角三角函数的基本关系式

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的零点与方程根的联系
  • 同角三角函数的基本关系式

函数零点的定义

一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。               


函数零点具有的性质:

对于任意函数y=(x)只要它的图象是连续不间断的,则有:
(1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.
(2)在相邻两个零点之间所有的函数值保持同号,


方程的根与函数的零点的联系

方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点


同角三角函数的关系式:

(1)
(2)商数关系:
(3)平方关系:


同角三角函数的基本关系的应用: 

已知一个角的一种三角函数值,根据角的终边的位置利用同角三角函数的基本关系,可以求出这个角的其他三角函数值.

同角三角函数的基本关系的理解

(1)在公式中,要求是同一个角,如不一定成立.
(2)上面的关系式都是对使它的两边具有意义的那些角而言的,如:基本三角关系式。对一切α∈R成立; Z)时成立.
(3)同角三角函数的基本关系的应用极为为广泛,它们还有如下等价形式: 

(4)在应用平方关系时,常用到平方根、算术平方根和绝对值的概念,应注意“±”的选取. 间的基本变形 三者通过 ,可知一求二,有关 等化简都与此基本变形有广泛的联系,要熟练掌握。