返回

高中数学

首页
  • 解答题
    已知数列{an}的前n项和为Sn,a1=1,an=
    1
    4
    Sn+1-
    1
    2
    (其中n∈N*)

    (I)求a2,a3
    (Ⅱ)设bn=
    1
    2
    an+1-an
    ,证明数列{bn}是等比数列,并求出其通项;
    (Ⅲ)设cn=
    22n+1
    anan+1
    ,求数列{cn}的前n项和Tn
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知数列{an}的前n项和为Sn,a1=1,an=14Sn+1-12(其中n∈N*).(I)求a2,a3;(Ⅱ)设bn=12an+1-an,证明数列{bn}是等比数列,并求出其通项;(Ⅲ)设cn=22n+1a...” 主要考查您对

等比数列的定义及性质

数列求和的其他方法(倒序相加,错位相减,裂项相加等)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等比数列的定义及性质
  • 数列求和的其他方法(倒序相加,错位相减,裂项相加等)

等比数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。


等比数列的性质:

在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2
(2)若m,n∈N*,则am=anqm-n
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。


等差数列和等比数列的比较:
 

如何证明一个数列是等比数列:

证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。


数列求和的常用方法:

1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
 
数列求和的方法多种多样,要视具体情形选用合适方法。


数列求和特别提醒:

(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。

 

发现相似题
与“已知数列{an}的前n项和为Sn,a1=1,an=14Sn+1-12(其中n∈N*)....”考查相似的试题有: