返回

高中三年级数学

首页
  • 解答题
    已知在三角形ABC中,
    (1)求sinA的值;
    (2)三角形ABC的面积为,求BC的长.
    本题信息:2012年吉林省月考题数学解答题难度较难 来源:沈诺(高中数学)
  • 本题答案
    查看答案
本试题 “已知在三角形ABC中,.(1)求sinA的值;(2)三角形ABC的面积为,求BC的长.” 主要考查您对

三角函数的诱导公式

正弦定理

面积定理:S=1/2absinC=1/2acsinB=1/2bcsinA

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 三角函数的诱导公式
  • 正弦定理
  • 面积定理:S=1/2absinC=1/2acsinB=1/2bcsinA

诱导公式:

公式一
公式二
公式三
公式四
公式五
公式六
规律:奇变偶不变,符号看象限。即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。


诱导公式口诀“奇变偶不变,符号看象限”意义:

 的三角函数值.
  (1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
  (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
 
记忆方法一:奇变偶不变,符号看象限:
   
 
记忆方法二:无论α是多大的角,都将α看成锐角.
   
以诱导公式二为例:
 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.
以诱导公式四为例:
        
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.
 
诱导公式的应用:
 
运用诱导公式转化三角函数的一般步骤:
     
特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

正弦定理:

在一个三角形中,各边和它所对角的正弦的比相等,即=2R。
有以下一些变式:
(1)
(2)
(3)


正弦定理在解三角形中的应用:

(1)已知两角和一边解三角形,只有一解。
(2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。
如已知a,b,A,
(一)若A为钝角或直角,当b≥a时,则无解;当a≥b时,有只有一个解;
(二)若A为锐角,结合下图理解。
①若a≥b或a=bsinA,则只有一个解。
②若bsinA<a<b,则有两解。
③若a<bsinA,则无解。

也可根据a,b的关系及与1的大小关系来确定。         


三角形面积公式:

(1)

其中r为三角形ABC内切圆半径,R为外接圆的半径,
(2)数量积形式的三角形面积公式:


(3)坐标形式的三角形面积公式:
 



方法提炼:

(1)三角形的面积经常与正余弦定理结合在一起考查,解题时要注意方程思想的运用,即通过正余弦定理建立起方程(组),进而求得边或角;
(2)要熟记常用的面积公式及其变形.