本试题 “已知函数f(x)=2x,等差数列{ax}的公差为2,若f(a2+a4+a6+a8+a10)=4,则log2[f(a1)·f(a2)·f(a3)·…·f(a10)]=( )。” 主要考查您对对数与对数运算
等差数列的定义及性质
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记做,其中a叫做对数的底数,N叫做真数。
通常以10为底的对数叫做常用对数,记做;
以无理数e=2.71828…为底的对数叫做自然对数,记做。
由定义知负数和0没有对数。
常用对数:
以10为底的对数叫做常用对数,。
自然对数:
以e为底的对数叫做自然对数,e是无理数,e≈-2. 718 28,。
对数的运算性质:
如果a>0,且a≠1,M>0,N>0,那么
(1);
(2);
(3);
(4)。
对数的恒等式:
(1);(2);
(3);(4);
(5)。
对数的换底公式及其推论:
对数式的化简与求值:
(1)化同底是对数式变形的首选方向,其中经常用到换底公式及其推论.
(2)结合对数定义,适时进行对数式与指数式的互化.
(3)利用对数运算法则,在积、商、幂的对数与对数的和、差、倍之间进行转化,
等差数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。
等差数列的性质:
(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;
(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;
(3)m,n∈N*,则am=an+(m-n)d;
(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap;
(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
(6)
(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即
(8) 仍为等差数列,公差为
对等差数列定义的理解:
①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.
②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有
③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;
④ 是证明或判断一个数列是否为等差数列的依据;
⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。
等差数列求解与证明的基本方法:
(1)学会运用函数与方程思想解题;
(2)抓住首项与公差是解决等差数列问题的关键;
(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).
与“已知函数f(x)=2x,等差数列{ax}的公差为2,若f(a2+a4+a6+a...”考查相似的试题有: