返回

高中数学

首页
  • 解答题
    求适合下列条件的圆锥曲线的标准方程:
    (1)中心在原点,焦点在 x轴上,短轴长为12,离心率为
    4
    5
    的椭圆;
    (2)抛物线的顶点在原点,它的准线过双曲线
    x2
    a2
    -
    y2
    b2
    =1
    的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为(
    3
    2
    6
    )
    ,求抛物线与双曲线的方程.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “求适合下列条件的圆锥曲线的标准方程:(1)中心在原点,焦点在 x轴上,短轴长为12,离心率为45的椭圆;(2)抛物线的顶点在原点,它的准线过双曲线x2a2-y2b2...” 主要考查您对

椭圆的标准方程及图象

双曲线的标准方程及图象

抛物线的标准方程及图象

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 椭圆的标准方程及图象
  • 双曲线的标准方程及图象
  • 抛物线的标准方程及图象

椭圆的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
椭圆的图像:

(1)焦点在x轴:

(2)焦点在y轴:


巧记椭圆标准方程的形式:

①椭圆标准方程的形式:左边是两个分式的平方和,右边是1;
②椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上;
③椭圆的标准方程中,三个参数a,b,c满足a2= b2+ c2
④由椭圆的标准方程可以求出三个参数a,b,c的值.

待定系数法求椭圆的标准方程:

求椭圆的标准方程常用待定系数法,要恰当地选择方程的形式,如果不能确定焦点的位置,那么有两种方法来解决问题:一是分类讨论,全面考虑问题;二是可把椭圆的方程设为n)用待定系数法求出m,n的值,从而求出标准方程,


双曲线的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
双曲线的图像:

(1)焦点在x轴上的双曲线的图像

(2)焦点在y轴上的双曲线的图像


判断双曲线的焦点在哪个轴上:

判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.

定义法求双曲线的标准方程:

求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,

待定系数法求双曲线的标准方程:

在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求λ.若焦点不确定时,要注意分类讨论.

利用双曲线的性质求解有关问题:

要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即


几种特殊的双曲线:

等轴双曲线 实轴和虚轴相等的双曲线叫做等轴双曲线.离心率两条渐近线互相垂直
共轭双曲线
共渐近线的双曲线

抛物线的标准方程及图像(见下表):


抛物线的标准方程的理解:

①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;
②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为
③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;
④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
共同点:
a.原点在抛物线上;
b.焦点都在坐标轴上;
c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的
不同点:
a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2
b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.

求抛物线的标准方程的常用方法:

(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.
(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。


发现相似题
与“求适合下列条件的圆锥曲线的标准方程:(1)中心在原点,焦点...”考查相似的试题有: