本试题 “已知A,B,C的坐标分别为A(3,0),B(0,3),C(cosα,sinα),.(1)若,求角α的值;(2)若,求的值.” 主要考查您对同角三角函数的基本关系式
用坐标表示向量的数量积
向量模的计算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
同角三角函数的关系式:
(1);
(2)商数关系:;
(3)平方关系:。
同角三角函数的基本关系的应用:
已知一个角的一种三角函数值,根据角的终边的位置利用同角三角函数的基本关系,可以求出这个角的其他三角函数值.
同角三角函数的基本关系的理解:
(1)在公式中,要求是同一个角,如不一定成立.
(2)上面的关系式都是对使它的两边具有意义的那些角而言的,如:基本三角关系式。对一切α∈R成立; Z)时成立.
(3)同角三角函数的基本关系的应用极为为广泛,它们还有如下等价形式:
(4)在应用平方关系时,常用到平方根、算术平方根和绝对值的概念,应注意“±”的选取. 间的基本变形 三者通过 ,可知一求二,有关 等化简都与此基本变形有广泛的联系,要熟练掌握。
两个向量的数量积的坐标运算:
非零向量,那么,即两个向量的数量积等于它们对应坐标的乘积。
向量的数量积的推广1:
设a=(x,y),则|a|=x2+y2 ,或|a|=
向量的数量积的推广2:
向量的模:
设,则有向线段的长度叫做向量的长度或模,记作:,则 。
向量模的坐标表示:
(1)若,则;
(2)若,那么。
求向量的模:
求向量的模主要是利用公式来解。
与“已知A,B,C的坐标分别为A(3,0),B(0,3),C(cosα,sin...”考查相似的试题有: