返回

初中数学

首页
  • 单选题
    已知a、b、c是△ABC三边的长,则方程ax2+(b+c)x+
    a
    4
    =0的根的情况为(  )
    A.没有实数根
    B.有两个相等的正实数根
    C.有两个不相等的负实数根
    D.有两个异号的实数根

    本题信息:2003年岳阳数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知a、b、c是△ABC三边的长,则方程ax2+(b+c)x+a4=0的根的情况为( )A.没有实数根B.有两个相等的正实数根C.有两个不相等的负实数根D.有两个异号的实数根” 主要考查您对

一元二次方程根与系数的关系

一元二次方程根的判别式

三角形的三边关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 一元二次方程根与系数的关系
  • 一元二次方程根的判别式
  • 三角形的三边关系
一元二次方程根与系数的关系:
如果方程 的两个实数根是那么
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

一元二次方程根与系数关系的推论:
1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
提示:
①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0


根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

三角形的三边关系:
在三角形中,任意两边和大于第三边,任意两边差小于第三边。
设三角形三边为a,b,c

a+b>c
a+c>b
b+c>a
a-b<c
a-c<b
b-c<a
在直角三角形中,设a、b为直角边,c为斜边。
则两直角边的平方和等于斜边平方。
在等边三角形中,a=b=c
在等腰三角形中, a,b为两腰,则a=b
在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc


三角形的三边关系定理及推论:
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;
②当已知两边时,可确定第三边的范围;
③证明线段不等关系。