返回

高中三年级数学

首页
  • 解答题
    在海岛A上有一座海拔1km的山峰,山顶设有一个观察站P,有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东15°、俯角为30°的B 处,到11:10时,又测得该船在岛北偏西45°、俯角为60°的C处。

    (1)求船的航行速度;
    (2)求船从B到C行驶过程中与观察站P的最短距离。
    本题信息:2011年模拟题数学解答题难度较难 来源:刘佩
  • 本题答案
    查看答案
本试题 “在海岛A上有一座海拔1km的山峰,山顶设有一个观察站P,有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东15°、俯角为30°的B 处,到11...” 主要考查您对

正弦定理

余弦定理

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正弦定理
  • 余弦定理

正弦定理:

在一个三角形中,各边和它所对角的正弦的比相等,即=2R。
有以下一些变式:
(1)
(2)
(3)


正弦定理在解三角形中的应用:

(1)已知两角和一边解三角形,只有一解。
(2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。
如已知a,b,A,
(一)若A为钝角或直角,当b≥a时,则无解;当a≥b时,有只有一个解;
(二)若A为锐角,结合下图理解。
①若a≥b或a=bsinA,则只有一个解。
②若bsinA<a<b,则有两解。
③若a<bsinA,则无解。

也可根据a,b的关系及与1的大小关系来确定。         



余弦定理:

三角形任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍,

推论:

在△ABC中,若a2+b2=c2,则C为直角;若a2+b2>c2,则C为锐角;若a2+b2<c2,则C为钝角。


余弦定理在解三角形中的应用:

(1)已知两边和夹角,
(2)已知三边。


其它公式:

射影公式:


发现相似题
与“在海岛A上有一座海拔1km的山峰,山顶设有一个观察站P,有一艘...”考查相似的试题有: