返回

高中一年级数学

首页
  • 解答题
    已知集合A=[2,log2t],集合B={x|(x-2)(x-5) ≤0}。
    (1)对于区间[a,b],定义此区间的“长度”为b-a,若A的区间“长度”为3,试求实数t的值;
    (2)若AB,试求实数t的取值范围。
    本题信息:2010年0115期末题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知集合A=[2,log2t],集合B={x|(x-2)(x-5) ≤0}。(1)对于区间[a,b],定义此区间的“长度”为b-a,若A的区间“长度”为3,试求实数t的值;(2)若AB,试求实数...” 主要考查您对

集合间的基本关系

对数函数的图象与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 集合间的基本关系
  • 对数函数的图象与性质

集合与集合的关系有“包含”与“不包含”,“相等”三种:

 1、 子集概念:
一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),
也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作AB,读作A不包含于B

2、集合相等:
对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B

3、真子集:
对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作AB(BA),读作A真包含于B(B真包含A) 


集合间基本关系:

性质1:

(1)空集是任何集合的子集,即A;

(2)空集是任何非空集合的真子集;

(3)传递性:AB,BCAC;AB,BCAC;

(4)AB,BAA=B。

性质2:

 子集个数的运算:含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。


集合间基本关系性质:

(1)空集是任何集合的子集,即A;
(2)空集是任何非空集合的真子集;
(3)传递性: 
(4)集合相等: 
(5)含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。


对数函数的图形:


对数函数的图象与性质


对数函数与指数函数的对比:

 (1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.
 (2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.
 (3)指数函数与对数函数的联系与区别:




对数函数单调性的讨论:

解决与对数函数有关的函数单调性问题的关键:一是看底数是否大于l,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性,但应注意中间变量的取值范围;三要注意其定义域(这是一个隐形陷阱),也就是要坚持“定义域优先”的原则.

利用对数函数的图象解题

涉及对数型函数的图象时,一般从最基本的对数函数的图象人手,通过平移、伸缩、对称变换得到对数型函数的图象,特别地,要注意底数a>l与O<a<l的两种不同情况,


底数对函数值大小的影响

1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O<a<l时,底数越小,函数图象越靠近x轴.利用这一规律,我们可以解决真数相同、对数不等时判断底数大小的问题.
 

2.类似地,在同一坐标系中分别作出的图象,如图所示,它们的图象在第一象限的规律是:直线x=l把第一象限分成两个区域,每个区域里对数函数的底数都是由右向左逐渐减小,比如分别对应函数,则必有