返回

高中数学

首页
  • 解答题
    已知等比数列{an}中,Sn为前n项和且a1+a3=5,S4=15,
    (Ⅰ)求数列{an}的通项公式.
    (Ⅱ)设bn=
    5
    2
    log2an,求bn的前n项和Tn的值.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知等比数列{an}中,Sn为前n项和且a1+a3=5,S4=15,(Ⅰ)求数列{an}的通项公式.(Ⅱ)设bn=52log2an,求bn的前n项和Tn的值.” 主要考查您对

等比数列的通项公式

等差数列的前n项和

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等比数列的通项公式
  • 等差数列的前n项和

等比数列的通项公式:

an=a1qn-1,q≠0,n∈N*


等比数列的通项公式的理解:

①在已知a1和q的前提下,利用通项公式可求出等比数列中的任意一项;
②在已知等比数列中任意两项的前提下,使用可求等比数列中任何一项;
③用函数的观点看等比数列的通项,等比数列{an}的通项公式,可以改写为.当q>o,且q≠1时,y=qx是一个指数函数,而是一个不为0的常数与指数函数的积,因此等比数列{an}的图象是函数的图象上的一群孤立的点;
④通项公式亦可用以下方法推导出来:

将以上(n一1)个等式相乘,便可得到
 
⑤用方程的观点看通项公式.在an,q,a1,n中,知三求一。


等差数列的前n项和的公式:

(1),(2),(3),(4)
当d≠0时,Sn是关于n的二次函数且常数项为0,{an}为等差数列,反之不能。


等差数列的前n项和的有关性质

(1),…成等差数列;
(2){an}有2k项时,=kd;
(3){an}有2k+1项时,S=(k+1)ak+1=(k+1)a, S=kak+1=ka,S:S=(k+1):k,S-S=ak+1=a


解决等差数列问题常用技巧:

1、等差数列中,已知5个元素:a1,an,n,d, S中的任意3个,便可求出其余2个,即知3求2。
为减少运算量,要注意设元的技巧,如奇数个成等差,可设为…,a-2d,a-d,a,a+d,a+2d,…,偶数个成等差,可设为…,a-3d,a-d,a+d,a+3d,…
2、等差数列{an}中,(1)若ap=q,aq=p,则列方程组可得:d=-1,a1=p+q-1,ap+q=0,S=-(p+q);
(2)当Sp=Sq时(p≠q),数形结合分析可得Sn中最大,Sp+q=0,此时公差d<0。