本试题 “经过A(2,0),以(2cosθ-2,sinθ)为方向向量的直线与经过B(-2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ。(Ⅰ)求点M(x,...” 主要考查您对用坐标表示向量的数量积
动点的轨迹方程
椭圆的性质(顶点、范围、对称性、离心率)
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
两个向量的数量积的坐标运算:
非零向量,那么,即两个向量的数量积等于它们对应坐标的乘积。
向量的数量积的推广1:
设a=(x,y),则|a|=x2+y2 ,或|a|=
向量的数量积的推广2:
动点的轨迹方程:
在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:
直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:
如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化——转化成某一基本轨迹的定义条件;
3、相关点法:
动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:
求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:
求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。
求轨迹方程的步骤:
(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);
(2)写集合写出符合条件P的点M的集合{M|P(M)};
(3)列式用坐标表示P(M),列出方程f(x,y)=0;
(4)化简化方程f(x,y)=0为最简形式;
(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,
椭圆的离心率:
椭圆的焦距与长轴长之比叫做椭圆的离心率。
椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:。
5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。
。
利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。
椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.
与“经过A(2,0),以(2cosθ-2,sinθ)为方向向量的直线与经过B...”考查相似的试题有: