返回

高中数学

首页
  • 单选题
    等比数列{an}中,“a1<a3”是“a5<a7”的(  )
    A.充分而不必要条件B.必要而不充分条件
    C.充要条件D.既不充分也不必要条件

    本题信息:2013年济宁二模数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “等比数列{an}中,“a1<a3”是“a5<a7”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件” 主要考查您对

充分条件与必要条件

等比数列的定义及性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 充分条件与必要条件
  • 等比数列的定义及性质

1、充分条件与必要条件:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可推出q,记作,并且说p是q的充分条件,q是p的必要条件;
2、充要条件:一般地,如果既有,又有,就记作,此时,我们说,p是q的充分必要条件,简称充要条件。
概括的说,如果,那么p与q互为充要条件。
3、充分不必要条件、必要不充分条件、既不充分也不必要条件:
①充分不必要条件:如果,且pq,则说p是q的充分不必要条件;
②必要不充分条件:如果pq,且,则说p是q的必要不充分条件;
③既不充分也不必要条件:如果pq,且pq,则说p是q的既不充分也不必要条件。

等比数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。


等比数列的性质:

在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2
(2)若m,n∈N*,则am=anqm-n
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。


等差数列和等比数列的比较:
 

如何证明一个数列是等比数列:

证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。


发现相似题
与“等比数列{an}中,“a1<a3”是“a5<a7”的( )A.充分而不必要...”考查相似的试题有: