本试题 “在直角梯形ABCD中,,,已知=6+,=x+y,=-2-3(,分别是x,y轴方向上的单位向量),求实数x,y的值。” 主要考查您对向量共线的充要条件及坐标表示
向量的线性运算及坐标表示
向量数量积的运算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
向量共线的充要条件:
向量与共线,当且仅当有唯一一个实数λ,使得。
向量共线的几何表示:
设,其中,当且仅当时,向量共线。
向量共线(平行)基本定理的理解:
(1)对于向量a(a≠0),b,如果有一个实数λ,使得b=λa,那么由向量数乘的定义知,a与b共线.
(2)反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)与b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.
向量的线性运算:
向量的线性运算是指向量的加、减、数乘的运算;对于任意向量a,b以及任意实数
向量的线性运算的坐标表示:
设,任意实数λ,m,n,则。
平面向量的几个重要结论:
(1)若a、b为不共线向量,则a+b、a-b是以a、b为邻边的平行四边形的对角线的向量.如图:
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
数量积的的运算律:
已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1);
(2);
(3)。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
与“在直角梯形ABCD中,,,已知=6+,=x+y,=-2-3(,分别是x,y...”考查相似的试题有: