返回

高中三年级数学

首页
  • 解答题

    如图,椭圆的中心为原点O,离心率e=,一条准线的方程是x=
    (Ⅰ)求椭圆的标准方程;
    (Ⅱ)设动点P满足:,其中M,N是椭圆上的点,直线OM与ON的斜率之积为。问:是否存在定点F,使得|PF|与点P到直线l:x=的距离之比为定值?若存在,求F的坐标;若不存在,说明理由。



    本题信息:2011年重庆市高考真题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “如图,椭圆的中心为原点O,离心率e=,一条准线的方程是x=,(Ⅰ)求椭圆的标准方程;(Ⅱ)设动点P满足:,其中M,N是椭圆上的点,直线OM与ON的斜率之积为。问:是...” 主要考查您对

向量的线性运算及坐标表示

椭圆的定义

椭圆的标准方程及图象

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量的线性运算及坐标表示
  • 椭圆的定义
  • 椭圆的标准方程及图象

向量的线性运算:

向量的线性运算是指向量的加、减、数乘的运算;对于任意向量a,b以及任意实数 

向量的线性运算的坐标表示:

,任意实数λ,m,n,则


平面向量的几个重要结论:

(1)若a、b为不共线向量,则a+b、a-b是以a、b为邻边的平行四边形的对角线的向量.如图:
 
 


椭圆的第一定义:

平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。

椭圆的第二定义:

平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。


椭圆的定义应该包含几个要素:

 
利用椭圆的定义解题:
 
当题目中出现一点在椭圆上的条件时,注意使用定义

椭圆的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
椭圆的图像:

(1)焦点在x轴:

(2)焦点在y轴:


巧记椭圆标准方程的形式:

①椭圆标准方程的形式:左边是两个分式的平方和,右边是1;
②椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上;
③椭圆的标准方程中,三个参数a,b,c满足a2= b2+ c2
④由椭圆的标准方程可以求出三个参数a,b,c的值.

待定系数法求椭圆的标准方程:

求椭圆的标准方程常用待定系数法,要恰当地选择方程的形式,如果不能确定焦点的位置,那么有两种方法来解决问题:一是分类讨论,全面考虑问题;二是可把椭圆的方程设为n)用待定系数法求出m,n的值,从而求出标准方程,


发现相似题
与“如图,椭圆的中心为原点O,离心率e=,一条准线的方程是x=,(Ⅰ...”考查相似的试题有: