返回

高中数学

首页
  • 解答题
    已知椭圆C的方程为
    x2
    a2
    +
    y2
    2
    = 1
    (a>0),其焦点在x轴上,点Q(
    2
    2
    7
    2
    )
    为椭圆上一点.
    (1)求该椭圆的标准方程;
    (2)设动点P(x0,y0)满足
    OP
    =
    OM
    +2
    ON
    ,其中M、N是椭圆C上的点,直线OM与ON的斜率之积为-
    1
    2
    ,求证:
    x20
    +2
    y20
    为定值;
    (3)在(2)的条件下探究:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.
    本题信息:2013年崇明县二模数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知椭圆C的方程为x2a2+y22= 1(a>0),其焦点在x轴上,点Q(22,72)为椭圆上一点.(1)求该椭圆的标准方程;(2)设动点P(x0,y0)满足OP=OM+2ON,其中M、...” 主要考查您对

平面向量基本定理及坐标表示

直线的倾斜角与斜率

椭圆的标准方程及图象

圆锥曲线综合

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平面向量基本定理及坐标表示
  • 直线的倾斜角与斜率
  • 椭圆的标准方程及图象
  • 圆锥曲线综合

平面向量的基本定理:

如果是同一平面内的两个不共线的向量,那么对这一平面内的任一向量存在唯一的一对有序实数使成立,不共线向量表示这一平面内所有向量的一组基底。

平面向量的坐标运算:

在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。


基底在向量中的应用:

(l)用基底表示出相关向量来解决向量问题是常用的方法之一.
(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。

用已知向量表示未知向量:

用已知向量表示未知向量,一定要结合图像,可从以下角度如手:
(1)要用基向量意识,把有关向量尽量统一到基向量上来;
(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;
(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。


直线的倾斜角的定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°。

直线的斜率的定义:

倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率。直线的斜率常用k表示。即k=tanα。斜率反映直线与x轴的倾斜程度。


直线斜率的性质:

时,k≥0;当时,k<0;当时,k不存在。


直线倾斜角的理解:

(1)注意“两个方向”:直线向上的方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

直线倾斜角的意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。

直线斜率的理解:

每条直线都有倾斜角,但每条直线不一定都有斜率, 斜率不存在;当 也逐渐增大; 且逐渐增大。


椭圆的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
椭圆的图像:

(1)焦点在x轴:

(2)焦点在y轴:


巧记椭圆标准方程的形式:

①椭圆标准方程的形式:左边是两个分式的平方和,右边是1;
②椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上;
③椭圆的标准方程中,三个参数a,b,c满足a2= b2+ c2
④由椭圆的标准方程可以求出三个参数a,b,c的值.

待定系数法求椭圆的标准方程:

求椭圆的标准方程常用待定系数法,要恰当地选择方程的形式,如果不能确定焦点的位置,那么有两种方法来解决问题:一是分类讨论,全面考虑问题;二是可把椭圆的方程设为n)用待定系数法求出m,n的值,从而求出标准方程,


圆锥曲线的综合问题:

1、圆锥曲线的范围问题有两种常用方法:
(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;
(2)所求量可表示为另一变量的函数,求函数的值域。
2、圆锥曲线的最值、定值及过定点等难点问题。


直线与圆锥曲线的位置关系:

(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.
(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.
①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.
②若
当Δ>0时,直线和圆锥曲线相交于不同两点,相交.
当Δ=0时,直线和圆锥曲线相切于一点,相切.
当Δ<0时,直线和圆锥曲线没有公共点,相离.

直线与圆锥曲线相交的弦长公式:

若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:
(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.
(2)韦达定理法:
不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.