本试题 “已知|a|=1,|b|=2,(1)若a∥b,求a•b;(2)若a,b的夹角为135°,求|a+b|.” 主要考查您对用数量积表示两个向量的夹角
向量数量积的运算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
用数量积表示两个向量的夹角:
设都是非零向量,,θ是与的夹角,根据向量数量积的定义及坐标表示可得
。
向量数量积问题中方法提炼:
(1)平面向量的数量积的运算有两种形式,一是依据定义来计算,二是利用坐标来计算,具体应用哪种形式应根据已知条件的特征来选择;
(2)平面向量数量积的计算类似于多项式的运算,解题中要注意多项式运算方法的运用;
(3)平面向量数量积的计算中要注意平面向量基本定理的应用,选择合适的基底,以简化运算
(4)向量的数量积是一个数而不是一个向量。
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
数量积的的运算律:
已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1);
(2);
(3)。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
与“已知|a|=1,|b|=2,(1)若a∥b,求a•b;(2)若a,b的夹角为1...”考查相似的试题有: