本试题 “已知tanα,tanβ是方程x2+3x-4=0的两根.求(1)tan(α+β);(2)sin(α+β)cos(α-β);(3)cos2(α+β)” 主要考查您对二次函数的性质及应用
两角和与差的三角函数及三角恒等变换
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
二次函数的定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。
二次函数的图像:
是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴;
③有顶点;
④c表示抛物线与y轴的交点坐标:(0,c)。
性质:二次函数y=ax2+bx+c,
①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数;
②当a<0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。
二次函数(a,b,c是常数,a≠0)的图像:
图像 | 函数的性质 | ||
a>0 | 定义域 | x∈R(个别题目有限制的,由解析式确定) | |
|
值域 | a>0 | a<0 |
|
| ||
奇偶性 | b=0时为偶函数,b≠0时为非奇非偶函数 | ||
a<0 | 单调性 | a>0 | a<0 |
|
|
| |
|
| ||
图像特点 |
|
二次函数的解析式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为 ;
(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为 。
二次函数在闭区间上的最值的求法:
(1)二次函数 在区间[p,g]上的最值问题
一般情况下,需要分三种情况讨论解决.
当a>0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令 .
①
②
③
④
特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.
(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:
特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
两角和与差的公式:
倍角公式:
半角公式:
万能公式:
三角函数的积化和差与和差化积:
三角恒等变换:
寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。
(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.
方法提炼:
(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.
与“已知tanα,tanβ是方程x2+3x-4=0的两根.求(1)tan(α+β);...”考查相似的试题有: