本试题 “设数列{an}的前n项和为Sn,且S2n-2Sn-anSn+1=0,n=1,2,3,…。(1)求a1,a2,a3;(2)求Sn的表达式。” 主要考查您对一般数列的项
数列求和的其他方法(倒序相加,错位相减,裂项相加等)
数学归纳法
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
一般数列的项的定义:
数列中的每一个数叫做这个数列的项。
数列项的性质:
①数列的项具有有序性,一个数列不仅与构成数列的“数”有关,而且与这些数的排列顺序有关,注意与集合中元素的无序性区分开来,;
②数列的项具有可重复性,数列中的数可重复出现,这也要与集合中元素的互异性区分开来:
③注意an与{an}的区别:an表示数列{an}的第n 项,而{an}表示数列a1,a2,…,an,…,
方法提炼:
1.数列最大项、最小项、数列有界性问题可借助数列的单调性来解决,判断单调性时常用(1)作差法;(2)作差法;(3)结合函数图像等方法;
2.若求最大项an,则an满足an≥an+1且an≥an-1;若求最小项an,则an满足an≤an+1且an≤an-1。
数列求和的常用方法:
1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
数列求和的方法多种多样,要视具体情形选用合适方法。
数列求和特别提醒:
(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。
归纳法:
对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般结论的推理方法叫做归纳法。归纳法包括完全归纳法和不完全归纳法。
数学归纳法:
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)证明当n取第一个值n0(n0∈N*)时命题成立;
(2)假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立;
完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立,这种证明方法叫做数学归纳法。
数学归纳法的特点:
①用数学归纳法进行证明时,要分两个步骤,两步同样重要,两步骤缺一不可;
②第二步证明,由假设n=k时命题成立,到n=k+1时.必须用假设条件,否则不是数学归纳法;
③最后一定要写“由(1)(2)……”。
数学归纳法的应用:
(1)证明恒等式;
(2)证明不等式;
(3)三角函数;
(4)计算、猜想、证明。
与“设数列{an}的前n项和为Sn,且S2n-2Sn-anSn+1=0,n=1,2,3,…...”考查相似的试题有: