本试题 “直线l过点P(2,1),且分别与x,y轴的正半轴于A,B两点,O为原点.(1)求△AOB面积最小值时l的方程;(2)|PA||PB|取最小值时l的方程.” 主要考查您对基本不等式及其应用
直线的方程
两点间的距离
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
基本不等式:
(当且仅当a=b时取“=”号);
变式:①,(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
②;③;④;
对基本不等式的理解:
(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即
对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2,;
(2)x+y=S(定值),那么当x=y时,积xy有最大值,;
(3)已知x2+y2=p,则x+y有最大值为,。
应用基本的不等式解题时:
注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。
利用基本不等式比较实数大小:
(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。
直线方程的定义:
以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
基本的思想和方法:
求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后釆用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。
直线方程的几种形式:
1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:
4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。
5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。
几种特殊位置的直线方程:
两点间的距离公式:
设,是平面直角坐标系中的两个点,则。
特别地,原点O(0,0)与任意一点P(x,y)的距离为
两点间的距离公式的理解:
(1)在公式中,的位置是对称的,没有先后之分,即间的距离也可表示为
(2)
与“直线l过点P(2,1),且分别与x,y轴的正半轴于A,B两点,O为...”考查相似的试题有: