返回

高中三年级数学

首页
  • 解答题
    如图:是以为直径的圆上两点,上一点,且,将圆沿直径折起,使点在平面的射影上.

    (1)求证:平面
    (2)求证:平面
    (3)求三棱锥的体积.
    本题信息:2012年江西省模拟题数学解答题难度较难 来源:刘建昰
  • 本题答案
    查看答案
本试题 “如图:、是以为直径的圆上两点,,,是上一点,且,将圆沿直径折起,使点在平面的射影在上.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.” 主要考查您对

柱体、椎体、台体的表面积与体积

直线与平面平行的判定与性质

直线与平面垂直的判定与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 柱体、椎体、台体的表面积与体积
  • 直线与平面平行的判定与性质
  • 直线与平面垂直的判定与性质

侧面积和全面积的定义:

(1)侧面积的定义:把柱、锥、台的侧面沿着它们的一条侧棱或母线剪开,所得到的展开图的面积,就是空间几何体的侧面积.
(2)全面积的定义:空间几何体的侧面积与底面积的和叫做空间几何体的全面积, 

柱体、锥体、台体的表面积公式(c为底面周长,h为高,h′为斜高,l为母线)

柱体、锥体、台体的体积公式:




多面体的侧面积与体积:

多面体 图像 侧面积 体积
棱柱
直棱柱的侧面展开图是矩形
棱锥
正棱柱的侧面展开图是一些全等的等腰三角形,
棱台
正棱台的侧面展开图是一些全等的等腰梯形,
  

旋转体的侧面积和体积:

旋转体 图形 侧面积与全面积 体积
圆柱
圆柱的侧面展开图的矩形:
圆锥
圆锥的侧面展开图是扇形:
圆台
圆台的侧面展开图是扇环:

线面平行的定义:

若直线和平面无公共点,则称直线和平面平行。

图形表示如下:

线面平行的判定定理:

平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行

符号语言:

 线面平行的性质定理:

如果一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 线面平行线线平行

 符号语言:


 


证明直线与平面平行的常用方法:

(l)反证法,即 
(2)判定定理法,即 
(3)面面平行的性质定理,即 
(4)向量法,平面外的直线的方向向量n与平面的法向量n垂直,则直线与平面平行,即


线面垂直的定义:

如果一条直线l和一个平面α内的任何一条直线垂直,就说这条直线l和这个平面α互相垂直,记作直线l叫做平面α的垂线,平面α叫做直线l的垂面。直线与平面垂直时,它们唯一的公共点P叫做垂足。

线面垂直的画法:

画线面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直,如图所示:


 


线面垂直的判定定理:

如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。(线线垂直线面垂直)

符号表示:

  如图所示,

 线面垂直的性质定理:

如果两条直线同垂直于一个平面,那么这两条直线平行。
(线面垂直线线平行)


线面垂直的判定定理的理解:

(1)判定定理的条件中,“平面内的两条相交直线”是关键性语句,一定要记准.
(2)如果一条直线垂直于平面内的两条直线,那么这条直线垂直于这个平面,这个结论是错误的.
(3)如果一条直线垂直于平面内的无数条直线,那么这条直线垂直于这个平面,这个结论也错误,因为这无数条直线可能平行.

证明线面垂直的方法:

(1)线面垂直的定义拓展了线线垂直的范围,线垂直于面,线就垂直于面内所有直线,这也是线面垂直的必备条件,利用这个条件可将线线垂直与线面垂直互相转化,这样就完成了空间问题与平面问题的转化.
(2)证线面垂直的方法①利用定义:若一直线垂直于平面内任一直线,则这条直线垂直于该平面.②利用线面垂直的判定定理:证一直线与一平面内的两条相交直线都垂直,③利用线面垂直的性质:两平行线中的一条垂直于平面,则另一条也垂直于这个平面,④用面面垂直的性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.⑤用面面平行的性质定理:一直线垂直于两平行平面中的一个,那么它必定垂直于另一个平面.⑥用面面垂直的性质:两相交平面同时垂直于第三个平面,那么两平面的交线垂直于第三个平面.⑦利用向量证明.