返回

高中数学

首页
  • 单选题
    下列命题中正确的命题是(  )
    A.函数y=
    1
    tanx
    的定义域是{x|x∈R且x≠kπ,k∈Z}
    B.当-
    π
    2
    ≤x≤
    π
    2
    时,函数y=sinx+
    3
    cosx
    的最小值是-1
    C.不存在实数φ,使得函数f(x)=sin(x+φ)为偶函数
    D.为了得到函数y=sin(2x+
    π
    3
    )
    ,x∈R的图象,只需把函数y=sin2x(x∈R)图象上所有的点向左平行移动
    π
    3
    个长度单位

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列命题中正确的命题是( )A.函数y=1tanx的定义域是{x|x∈R且x≠kπ,k∈Z}B.当-π2≤x≤π2时,函数y=sinx+3cosx的最小值是-1C.不存在实数φ,使得函数f(x)=si...” 主要考查您对

真命题、假命题

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

函数y=Asin(wx+φ)的图象与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
  • 函数y=Asin(wx+φ)的图象与性质

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。


函数的图象:

1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,
单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。
2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。
3、函数+K的图象与y=sinx的图象的关系:
把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ)
把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的y=sin(ωx+φ)
把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)
把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K;
若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。


函数y=Asin(x+φ)的性质:

1、y=Asin(x+φ)的周期为
2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。


发现相似题
与“下列命题中正确的命题是( )A.函数y=1tanx的定义域是{x|x∈R...”考查相似的试题有: