本试题 “已知O(0,0),B(2,0),C(1,)是△OBC的三个顶点,求:(1)△OBC的面积;(2)△OBC的外接圆的方程。” 主要考查您对面积定理:S=1/2absinC=1/2acsinB=1/2bcsinA
圆的标准方程与一般方程
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
三角形面积公式:
(1)
,
其中r为三角形ABC内切圆半径,R为外接圆的半径, 。
(2)数量积形式的三角形面积公式:
方法提炼:
(1)三角形的面积经常与正余弦定理结合在一起考查,解题时要注意方程思想的运用,即通过正余弦定理建立起方程(组),进而求得边或角;
(2)要熟记常用的面积公式及其变形.
圆的定义:
平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。
圆的标准方程:
圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为。
圆的一般方程:
圆的一般方程
当>0时,表示圆心在,半径为的圆;
当=0时,表示点;
当<0时,不表示任何图形。
圆的定义的理解:
(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.
圆的方程的理解:
(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.即
几种特殊位置的圆的方程:
条件 | 标准方程 | 一般方程 |
圆心在原点 |
|
|
过原点 |
|
|
圆心在x轴上 |
|
|
圆心在y轴上 |
|
|
与x轴相切 |
|
|
与y轴相切 |
|
|
与x,y轴都相切 |
|
|
圆心在x轴上且过原点 |
|
|
圆心在y轴上且过原点 |
|
|
与“已知O(0,0),B(2,0),C(1,)是△OBC的三个顶点,求:...”考查相似的试题有: