返回

高中三年级数学

首页
  • 解答题
    如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点,
    (Ⅰ)设点P分有向线段所成的比为λ,证明:
    (Ⅱ)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程。


    本题信息:2004年湖南省高考真题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点,(Ⅰ)设点P分有向线段所成的比为λ,证明:;...” 主要考查您对

线段的定比分点

用坐标表示向量的数量积

圆的标准方程与一般方程

直线与抛物线的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 线段的定比分点
  • 用坐标表示向量的数量积
  • 圆的标准方程与一般方程
  • 直线与抛物线的应用

线段的定比分点定义:

设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数λ,使P1P=λPP2,λ叫做点P分有向线段所成的比,P点叫做有向线段 的以定比为λ的定比分点。
当P点在线段 P1P2上时,λ>0;当P点在线段 P1P2的延长线上时,λ<-1;当P点在线段P2P1的延长线上时 -1<λ<0。
若点P分有向线段所成的比为λ,则点P分有向线段所成的比为

有向线段的定比分点的坐标公式:

(1)设
在使用定比分点的坐标公式时,应明确(x,y),(x1,y1),(x2,y2)的意义,即分别为分点,起点,终点的坐标。一般在计算中应根据题设,自行确定起点,分点和终点并根据这些点确定对应的定比λ。
(2)当λ=1时,就得到P1P2的中点公式:
(3)三角形ABC的重心公式:设,则重心


两个向量的数量积的坐标运算:

非零向量,那么,即两个向量的数量积等于它们对应坐标的乘积。


向量的数量积的推广1:

a=(x,y),则|a|=x2+y2 ,或|a|=

向量的数量积的推广2:

,则
 
向量的数量积的坐标表示的证明:
 
已知 ,则
 

圆的定义:

平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。

圆的标准方程:

圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为

圆的一般方程:

圆的一般方程
>0时,表示圆心在,半径为的圆;
=0时,表示点
<0时,不表示任何图形。


圆的定义的理解:

(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.

圆的方程的理解:

(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.


几种特殊位置的圆的方程:

条件 标准方程 一般方程
圆心在原点
过原点
圆心在x轴上
圆心在y轴上
与x轴相切
与y轴相切
与x,y轴都相切
圆心在x轴上且过原点
圆心在y轴上且过原点

设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。

直线与抛物线的位置关系:

直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如: