本试题 “已知向量a=(1,2),b=(cosα,sinα),设m=a+tb(t为实数)。(1)若α=,求当|m|取最小值时实数t的值;(2)若a⊥b,问:是否存在实数t,使得向量a-b和向量m...” 主要考查您对向量的线性运算及坐标表示
用数量积表示两个向量的夹角
向量模的计算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
向量的线性运算:
向量的线性运算是指向量的加、减、数乘的运算;对于任意向量a,b以及任意实数
向量的线性运算的坐标表示:
设,任意实数λ,m,n,则。
平面向量的几个重要结论:
(1)若a、b为不共线向量,则a+b、a-b是以a、b为邻边的平行四边形的对角线的向量.如图:
用数量积表示两个向量的夹角:
设都是非零向量,,θ是与的夹角,根据向量数量积的定义及坐标表示可得
。
向量数量积问题中方法提炼:
(1)平面向量的数量积的运算有两种形式,一是依据定义来计算,二是利用坐标来计算,具体应用哪种形式应根据已知条件的特征来选择;
(2)平面向量数量积的计算类似于多项式的运算,解题中要注意多项式运算方法的运用;
(3)平面向量数量积的计算中要注意平面向量基本定理的应用,选择合适的基底,以简化运算
(4)向量的数量积是一个数而不是一个向量。
向量的模:
设,则有向线段的长度叫做向量的长度或模,记作:,则 。
向量模的坐标表示:
(1)若,则;
(2)若,那么。
求向量的模:
求向量的模主要是利用公式来解。
与“已知向量a=(1,2),b=(cosα,sinα),设m=a+tb(t为实数)...”考查相似的试题有: