返回

高中数学

首页
  • 单选题
    有下列四个命题:
    ①函数y=10-x和函数y=10x的图象关于x轴对称;
    ②所有幂函数的图象都经过点(1,1);
    ③若实数a、b满足a+b=1,则
    1
    a
    +
    4
    b
    的最小值为9;
    ④若{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的充要条件.
    其中真命题的个数有(  )
    A.1B.2C.3D.4

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “有下列四个命题:①函数y=10-x和函数y=10x的图象关于x轴对称;②所有幂函数的图象都经过点(1,1);③若实数a、b满足a+b=1,则1a+4b的最小值为9;④若{an}是首项...” 主要考查您对

真命题、假命题

充分条件与必要条件

指数函数的图象与性质

幂函数

基本不等式及其应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 充分条件与必要条件
  • 指数函数的图象与性质
  • 幂函数
  • 基本不等式及其应用

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


1、充分条件与必要条件:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可推出q,记作,并且说p是q的充分条件,q是p的必要条件;
2、充要条件:一般地,如果既有,又有,就记作,此时,我们说,p是q的充分必要条件,简称充要条件。
概括的说,如果,那么p与q互为充要条件。
3、充分不必要条件、必要不充分条件、既不充分也不必要条件:
①充分不必要条件:如果,且pq,则说p是q的充分不必要条件;
②必要不充分条件:如果pq,且,则说p是q的必要不充分条件;
③既不充分也不必要条件:如果pq,且pq,则说p是q的既不充分也不必要条件。

指数函数y=ax(a>0,且a≠1)的图象和性质: 

0<a<1 a>1
图像
图像 定义域 R
值域 (0,+∞)
恒过定点 图像恒过定点(0,1),即当x等于0时,y=1
单调性 在(-∞,+∞)上是减函数 在(-∞,+∞)上是增函数
函数值的变化规律 当x<0时,y>1 当x<0时,0<y<1
当x=0时,y=1 当x=0时,y=1
当x>0时,0<y<1 当x>0时,y>1

底数对指数函数的影响:

①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当0<a<l时,底数越小,函数图象在第一象限越靠近x轴.
②底数对函数值的影响如图.
 
③当a>0,且a≠l时,函数 与函数y=的图象关于y轴对称。

利用指数函数的性质比较大小:

 若底数相同而指数不同,用指数函数的单调性比较:
 若底数不同而指数相同,用作商法比较;
 若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值,


指数函数图象的应用:

函数的图象是直观地表示函数的一种方法.函数的很多性质,可以从图象上一览无余.数形结合就是几何与代数方法紧密结合的一种数学思想.指数函数的图象通过平移、翻转等变可得出一般函数的图象.利用指数函数的图象,可解决与指数函数有关的比较大小、研究单调性、方程解的个数、求值域或最值等问题.


冥函数的定义

一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。

幂函数的解析式:

y=xα

幂函数的图像:

 

 


 幂函数图像的性质:

所有幂函数在(0,+∞)上都有定义.
①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增; 
②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;
③当O<a<l时,曲线上凸,当a>l时,曲线下凸.
④当a=l时,图象为过点(0,0)和(1,1)的直线.
⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。

幂函数图象的其他性质:

(1)图象的对称性:
把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,
 (2)图象的形状:
 ①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).
 ②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。

幂函数的单调性和奇偶性:
对于幂函数(a∈R).
(1)单调性
当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.
(2)奇偶性
①当a为整数时,
若a为偶数,则是偶函数;若a为奇数,则是奇函数。
②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数, 若分母q为偶数,则为非奇非偶函数.



基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式:
 
 

发现相似题
与“有下列四个命题:①函数y=10-x和函数y=10x的图象关于x轴对称;...”考查相似的试题有: