返回

高中数学

首页
  • 解答题
    已知O为坐标原点,M(cosx,2
    3
    ),N(2cosx,sinxcosx+
    3
    6
    a)
    其中x∈R,a为常数,
    设函数f(x)=
    OM
    ON

    (Ⅰ)求函数y=f(x)的表达式和对称轴方程;
    (Ⅱ)若角C为△ABC的三个内角中的最大角,且y=f(C)的最小值为0,求a的值.
    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知O为坐标原点,M(cosx,23),N(2cosx,sinxcosx+36a)其中x∈R,a为常数,设函数f(x)=OM•ON(Ⅰ)求函数y=f(x)的表达式和对称轴方程;(Ⅱ)若角C为△ABC的三...” 主要考查您对

已知三角函数值求角

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

两角和与差的三角函数及三角恒等变换

向量数量积的运算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 已知三角函数值求角
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
  • 两角和与差的三角函数及三角恒等变换
  • 向量数量积的运算

反三角函数的定义:

(1)反正弦:在闭区间上符合条件sinx=a(-1≤a≤1)的角x,叫做实数a的反正弦,记作arcsina,即x=arcsina,其中x∈,且a=sinx;
注意arcsina表示一个角,这个角的正弦值为a,且这个角在内(-1≤a≤1)。
(2)反余弦:在闭区间上,符合条件cosx=a(-1≤a≤1)的角x,叫做实数a的反余弦,记作arccosa,即x=arccosa,其中x∈[0,π],且a=cosx。
(3)反正切:在开区间内,符合条件tanx=a(a为实数)的角x,叫做实数a的反正切,记做arctana,即x=arctana,其中x∈,且a=tanx。


反三角函数的性质:

(1)sin(arcsina)=a(-1≤a≤1),cos(arccosa)=a(-1≤a≤1),
tan(arctana)=a;
(2)arcsin(-a)=-arcsina,arccos(-a)=π-arccosa,arctan(-a)=-arctana;
(3)arcsina+arccosa=
(4)arcsin(sinx)=x,只有当x在内成立;同理arccos(cosx)=x只有当x在闭区间[0,π]上成立。


已知三角函数值求角的步骤:

(1)由已知三角函数值的符号确定角的终边所在的象限(或终边在哪条坐标轴上);
(2)若函数值为正数,先求出对应锐角α1,若函数值为负数,先求出与其绝对值对应的锐角α1
(3)根据角所在象限,由诱导公式得出0~2π间的角,如果适合条件的角在第二象限,则它是π-α1;如果适合条件的角在第三象限,则它是π+α1;在第四象限,则它是2π-α1;如果是-2π到0的角,在第四象限时为-α1,在第三象限为-π+α1,在第二象限为-π-α1
(4)如果要求适合条件的所有角,则利用终边相同的角的表达式来写出。


正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。


两角和与差的公式:






倍角公式:



半角公式:


万能公式:

三角函数的积化和差与和差化积:








三角恒等变换:

寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。


三角函数式化简要遵循的"三看"原则:

(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.

方法提炼:

(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.


两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。


数量积的的运算律:

已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1)
(2)
(3)


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,