返回

高中三年级数学

首页
  • 解答题
    已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
    (Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
    (Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;
    (Ⅲ)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.
    本题信息:2012年期末题数学解答题难度极难 来源:沈诺(高中数学)
  • 本题答案
    查看答案
本试题 “已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;(Ⅲ...” 主要考查您对

函数零点的判定定理

函数的单调性与导数的关系

函数的最值与导数的关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数零点的判定定理
  • 函数的单调性与导数的关系
  • 函数的最值与导数的关系

函数零点存在性定理:

一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.
 (2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2 -3x +2有f(0)·f(3)>0,但函数f(x)在区间(0,3)上有两个零点.
 (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点.


函数零点个数的判断方法:

(1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点.
特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点
                ②函数的零点是实数而不是数轴上的点.
(2)代数法:求方程f(x)=0的实数根.


导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


函数的最大值和最小值:

在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。


利用导数求函数的最值步骤:

(1)求f(x)在(a,b)内的极值;
(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。

 用导数的方法求最值特别提醒:

①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;
②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;
③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。 


生活中的优化问题:

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,
不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.

用导数解决生活中的优化问题应当注意的问题:

(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;
(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;
(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.

利用导数解决生活中的优化问题:

 (1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.
 (2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,
  ①求函数y =f(x)在(a,b)上的极值;
  ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
  (3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.