本试题 “如图,函数y=2sin(πx+ψ),x∈R(其中0≤ψ≤)的图象与y轴交于点(0,1),(Ⅰ)求ψ的值;(Ⅱ)设P是图象上的最高点,M,N是图象与x轴的交点,求与的夹角。” 主要考查您对函数y=Asin(wx+φ)的图象与性质
用数量积表示两个向量的夹角
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
函数的图象:
1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,
单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。
2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。
3、函数+K的图象与y=sinx的图象的关系:
把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ)
把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的,y=sin(ωx+φ)
把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)
把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K;
若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。
函数y=Asin(x+φ)的性质:
1、y=Asin(x+φ)的周期为;
2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。
用数量积表示两个向量的夹角:
设都是非零向量,,θ是与的夹角,根据向量数量积的定义及坐标表示可得
。
向量数量积问题中方法提炼:
(1)平面向量的数量积的运算有两种形式,一是依据定义来计算,二是利用坐标来计算,具体应用哪种形式应根据已知条件的特征来选择;
(2)平面向量数量积的计算类似于多项式的运算,解题中要注意多项式运算方法的运用;
(3)平面向量数量积的计算中要注意平面向量基本定理的应用,选择合适的基底,以简化运算
(4)向量的数量积是一个数而不是一个向量。
与“如图,函数y=2sin(πx+ψ),x∈R(其中0≤ψ≤)的图象与y轴交于...”考查相似的试题有: