本试题 “设集合M={(x,y)|x2+y2=1,x,y∈R},N={x|x2-y=0,x,y∈R},则M∩N中元素的个数是( )A.0B.1C.2D.3” 主要考查您对集合间交、并、补的运算(用Venn图表示)
圆的标准方程与一般方程
抛物线的标准方程及图象
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
1、交集概念:
(1)一般地,由所有属于集合A且集合B的元素所组成的集合,叫做A与B的交集,记作A∩B,读作A交B,表达式为A∩B={x|x∈A且x∈B}。
(2)韦恩图表示为
。
2、并集概念:
(1)一般地,由所有属于集合A或集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,读作A并B,表达式为A∪B={x|x∈A或x∈B}。
(2)韦恩图表示为
。
3、全集、补集概念:
(1)全集:一般地,如果一个集合含有我们所要研究的各个集合的全部元素,就称这个集合为全集,通常记作U。
补集:对于一个集合A,由全集U中所有不属于A的元素组成的集合称为集合A相对于全集U的补集,记作CUA,读作U中A的补集,表达式为CUA={x|x∈U,且xA}。
(2)韦恩图表示为
。
1、交集的性质:
2、并集的性质:
3、补集的性质:
圆的定义:
平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。
圆的标准方程:
圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为。
圆的一般方程:
圆的一般方程
当>0时,表示圆心在,半径为的圆;
当=0时,表示点;
当<0时,不表示任何图形。
圆的定义的理解:
(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.
圆的方程的理解:
(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.即
几种特殊位置的圆的方程:
条件 | 标准方程 | 一般方程 |
圆心在原点 |
|
|
过原点 |
|
|
圆心在x轴上 |
|
|
圆心在y轴上 |
|
|
与x轴相切 |
|
|
与y轴相切 |
|
|
与x,y轴都相切 |
|
|
圆心在x轴上且过原点 |
|
|
圆心在y轴上且过原点 |
|
|
抛物线的标准方程及图像(见下表):
抛物线的标准方程的理解:
①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;
②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为
③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;
④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
共同点:
a.原点在抛物线上;
b.焦点都在坐标轴上;
c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的
不同点:
a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2;
b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.
求抛物线的标准方程的常用方法:
(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.
(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。
与“设集合M={(x,y)|x2+y2=1,x,y∈R},N={x|x2-y=0,x,y∈R}...”考查相似的试题有: