返回

高中数学

首页
  • 填空题
    已知命题p:函数y=log0、5(x2+2x+a)的值域为R,命题q:函数y=-(5-2a)x是减函数、若p或q为真命题,p且q为假命题,则实数a的取值范围是______、
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知命题p:函数y=log0、5(x2+2x+a)的值域为R,命题q:函数y=-(5-2a)x是减函数、若p或q为真命题,p且q为假命题,则实数a的取值范围是______、” 主要考查您对

真命题、假命题

指数函数模型的应用

对数函数的解析式及定义(定义域、值域)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 指数函数模型的应用
  • 对数函数的解析式及定义(定义域、值域)

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


指数函数模型的定义

恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:
;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.
(2)对于形如一类的指数型复合函数,有以下结论:
①函数的定义域与f(x)的定义域相同;
②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;
③当a>l时,函数与函数f(x)的单调性相同;当O<a<l时,函数与函数f(x)的单调性相反.


对数函数的定义:

一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。

对数函数的解析式:

y=logax(a>0,且a≠1)


在解有关对数函数的解析式时注意

在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。


发现相似题
与“已知命题p:函数y=log0、5(x2+2x+a)的值域为R,命题q:函数...”考查相似的试题有: