返回

高中数学

首页
  • 解答题
    已知函数f(x)=x3-x,其图象记为曲线C.
    (1)求函数f(x)的单调区间;
    (2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则
    S1
    S2
    为定值.
    本题信息:2010年福建数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数f(x)=x3-x,其图象记为曲线C.(1)求函数f(x)的单调区间;(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一...” 主要考查您对

函数的单调性与导数的关系

定积分的概念及几何意义

合情推理

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系
  • 定积分的概念及几何意义
  • 合情推理

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


定积分的定义:

设函数f(x)在[a,b]上有界(通常指有最大值和最小值),在a与b之间任意插入n-1个分点,,将区间[a,b]分成n个小区间(i=1,2,…,n),记每个小区间的长度为(i=1,2,…,n),在上任取一点ξi,作函数值f(ξi)与小区间长度的乘积f(ξi (i=1,2,…,n),并求和,记λ=max{△xi;i=1,2,…,n },如果当λ→0时,和s总是趋向于一个定值,则该定值便称为函数f(x)在[a,b]上的定积分,记为,即,其中, 称为函数f(x)在区间[a,b]的积分和。

定积分的几何意义:

定积分在几何上,
当f(x)≥0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积;
当f(x)≤0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积的负值;
一般情况下,表示介于曲线y=f(x)、两条直线x=a、x=b与x轴之间的个部分面积的代数和。


定积分的性质:

(1)(k为常数);
(2)
(3)(其中a<c<b)。


 定积分特别提醒:

①定积分不是一个表达式,而是一个常数,它只与被积函数及积分区间有关,而与积分变量的记法无关,例如: 
②定义中区间的分法和ξ的取法是任意的,


归纳推理的定义:

根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;

类比推理的定义:

由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫做类比推理(简称类比)。类比推理是由特殊到特殊的推理。


类比推理的一般步骤:

(1)找出两类事物之间的相似性或一致性;
(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);
(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;
(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。

归纳推理的一般步骤:

①通过观察个别情况发现某些相同性质;
②从已知的相同性质中推出一个明确表达的一般性命题(猜想).

归纳推理和类比推理的特点:

归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理。

归纳推理的应用方法:

归纳推理是由部分到整体、由个别到一般的推理,要注意探求的对象的本质属性与因果关系.与数列有关的问题,要联想等差、等比数列,把握住数的变化规律.

类比推理的应用方法:

合情推理的正确与否来源于平时知识的积累,如平面到空间、长度到面积、面积到体积、平面中的点与空间中的直线、平面中的直线与空间巾的平面.


发现相似题
与“已知函数f(x)=x3-x,其图象记为曲线C.(1)求函数f(x)的...”考查相似的试题有: