返回

高中数学

首页
  • 解答题
    如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,ABDC,∠ABC=∠CAD=90°,且PA=AB=BC,点E是棱PB上的动点.
    (Ⅰ)当PD平面EAC时,确定点E在棱PB上的位置;
    (Ⅱ)在(Ⅰ)的条件下,求二面角A-CE-P余弦值.
    魔方格

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=∠CAD=90°,且PA=AB=BC,点E是棱PB上的动点.(Ⅰ)当PD∥平面EAC时,确定点E在棱PB上的位置...” 主要考查您对

二面角

直线与平面平行的判定与性质

用向量方法解决线线、线面、面面的夹角问题

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 二面角
  • 直线与平面平行的判定与性质
  • 用向量方法解决线线、线面、面面的夹角问题

半平面的定义:

一条直线把平面分成两个部分,每一部分都叫做半平面.

二面角的定义:

从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

二面角的平面角:

以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。 一个平面角的大小可用它的平面的大小来衡量,二面角的平面角是多少度,就说这个二面角是多少度。二面角大小的取值范围是[0,180°]。

 直二面角:

平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角。


二面角的平面角具有下列性质:

a.二面角的棱垂直于它的平面角所在的平面,即l⊥平面AOB.
b.从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.
c.二面角的平面角所在的平面与二面角的两个面都垂直,即平面AOB⊥α,平面AOB⊥α.


求二面角的方法:

(1)定义法:通过二面角的平面角来求;找出或作出二面角的平面角;证明其符合定义;通过解三角形,计算出二面角的平面角.上述过程可概括为一作(找)、二证、三计算”.
(2)三垂线法:已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其逆定理作出平面角.
(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直.
(4)射影法:利用面积射影定理求二面角的大小;其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.
(5)向量法:设二面角的平面角为θ.
①如果那么
②设向量m、n分别为平面α和平面β的法向量是相等还是互补,根据具体图形判断。

对二面角定义的理解:

根据这个定义,两个平面相交成4个二面角,其中相对的两个二面角的大小相等,如果这4个二面角中有1个是直二面角,则这4个二面角都是直二面角,这时两个平面互相垂直.按照定义,欲证两个平面互相垂直,或者欲证某个二面角是直二面角,只需证明它的平面角是直角,两个平面相交,如果交成的二面角不是直二面角,那么必有一对锐二面角和一对钝二面角,今后,两个平面所成的角是指其中的一对锐二面角.并注意两个平面所成的角与二面角的区别. 


线面平行的定义:

若直线和平面无公共点,则称直线和平面平行。

图形表示如下:

线面平行的判定定理:

平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行

符号语言:

 线面平行的性质定理:

如果一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 线面平行线线平行

 符号语言:


 


证明直线与平面平行的常用方法:

(l)反证法,即 
(2)判定定理法,即 
(3)面面平行的性质定理,即 
(4)向量法,平面外的直线的方向向量n与平面的法向量n垂直,则直线与平面平行,即


异面直线所成角: 


(其中为异面直线a,b所成角,分别表示异面直线a,b的方向向量)。

直线AB与平面所成角:

为平面α的法向量);

二面角的平面角:

为平面α,β的法向量)。


用向量求异面直线所成角注意:

①求异面直线所成的角常用平移法或向量法,特别是向量法,由于降低了空间想象的要求,所以需引起我们的重视,用向量法时,需注意两异面直线夹角的范围是
②两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.

求直线与平面所成的角既可选择传统立体几何的综合推理法,也可选择空间向量的向量法:

①求直线和平面所成角的步骤:作出斜线与其射影所成的角;证明所作的角就是要求的角;常在直角三角形(垂线、斜线、射影所组成的直角三角形)中解出所求角的大小:
②在用向量法求直线OP与α所成的角时一般有两种途径:一是直接求其中OP′,为斜线OP在平面α内的射影;二是通过求进而转化求解,其中n为平面α的法向量。

用向量求二面角注意:

①当法向量的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于法向量的夹角的大小;
②当法向量的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于法向量的夹角的补角的大小.

求二面角,大致有两种基本方法:

(1)传统立体几何的综合推理法:①定义法;②垂面法;③三垂线定理法;④射影面积法.
(2)空间向量的坐标法:建系并确定点及向量的坐标,分别求出两个平面的法向量,通过求两个法向量的夹角得出二面角的大小.


发现相似题
与“如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC...”考查相似的试题有: