返回

高中数学

首页
  • 解答题
    设{an}是等差数列,a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1,Tn是它的前n项和,如果a3=b2,S5=2T2-6,
    lim
    n→∞
    Tn=9
    ,{an},{bn}的通项公式.
    本题信息:1991年云南数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “设{an}是等差数列,a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1,Tn是它的前n项和,如果a3=b2,S5=2T2-6,limn→∞Tn=9,{an},{bn}的通项公式.” 主要考查您对

等差数列的定义及性质

等比数列的定义及性质

数列的极限

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等差数列的定义及性质
  • 等比数列的定义及性质
  • 数列的极限

等差数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。


等差数列的性质:

(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;
(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;
(3)m,n∈N*,则am=an+(m-n)d;
(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap
(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
(6)
(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即
(8) 仍为等差数列,公差为


 


对等差数列定义的理解:

①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. 
②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有
③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;
是证明或判断一个数列是否为等差数列的依据;
⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

等差数列求解与证明的基本方法:

(1)学会运用函数与方程思想解题;
(2)抓住首项与公差是解决等差数列问题的关键;
(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).


等比数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。


等比数列的性质:

在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2
(2)若m,n∈N*,则am=anqm-n
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。


等差数列和等比数列的比较:
 

如何证明一个数列是等比数列:

证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。


数列的极限定义(描述性的):

如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。

数列的极限严格定义

即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。

数列极限的四则运算法则:

,则
(1)
(2)
(3)
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。


an无限接近于a的方式有三种:

第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,


一些常用数列的极限:

(1)常数列A,A,A,…的极限是A;
(2)当时,
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。