返回

高中三年级数学

首页
  • 解答题
    已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2)。
    (1)求抛物线C的方程;
    (2)命题:“过椭圆的一个焦点F1作与x轴不垂直的任意直线l交椭圆于A,B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值是”,命题中涉及了这么几个要素:给定的圆锥曲线Γ,过该圆锥曲线焦点F1的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F1,M两点间的距离的比值。试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明;
    (3)试推广(2)中的命题,写出关于抛物线的一般性命题(不必证明)。
    本题信息:2011年专项题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2)。(1)求抛物线C的方程;(2)命题:“过椭圆的一个焦点F1作与x轴不垂直的任意直线l交椭圆于A,B...” 主要考查您对

抛物线的定义

抛物线的标准方程及图象

抛物线的性质(顶点、范围、对称性、离心率)

直线与抛物线的应用

合情推理

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 抛物线的定义
  • 抛物线的标准方程及图象
  • 抛物线的性质(顶点、范围、对称性、离心率)
  • 直线与抛物线的应用
  • 合情推理

抛物线的定义:

平面内与一个定点F和一条定直线l(F∈l)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线,抛物线的定义也可以说成是:平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹.

抛物线中的有关概念:

定义 图形
抛物线的弦、焦点弦 连结抛物线上任意两点的线段,叫做抛物线的弦.
过抛物线焦点的弦,叫做焦点弦
抛物线的通径和焦参数 过焦点且垂直于抛物线的弦叫做抛物线的通径,通径长度的一半叫做抛物线的焦参数
焦点半径 抛物线上一点P和焦点的连线,叫做点P的焦点半径或焦半径
抛物线的焦准距 抛物线的焦点和它的准线间的距离,叫做焦准距,依据定义,显然有KO=OF即焦准距等于通径长的一半,焦准距用常数p表示

抛物线的规律总结:

①在抛物线的定义中的定点F不在直线l上,否则动点的轨迹就是过点F且垂直于直线l的一条直线,而不再是抛物线;
②抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故在一些问题中,二者可以互相转化,这是利用抛物线定义解题的关键.


抛物线的标准方程及图像(见下表):


抛物线的标准方程的理解:

①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;
②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为
③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;
④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
共同点:
a.原点在抛物线上;
b.焦点都在坐标轴上;
c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的
不同点:
a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2
b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.

求抛物线的标准方程的常用方法:

(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.
(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。



抛物线的性质(见下表):

抛物线的焦点弦的性质:

 
 
 
 
 
 
 

关于抛物线的几个重要结论:

(1)弦长公式同椭圆.
(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部 
(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+
(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是
(5)过抛物线y2=2px上两点 的两条切线交于点M(x0,y0),则
(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.

利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.

抛物线中定点问题的解决方法:

在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:

利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

抛物线中的几何证明方法:
 
利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。

直线与抛物线的位置关系:

直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如:


归纳推理的定义:

根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;

类比推理的定义:

由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫做类比推理(简称类比)。类比推理是由特殊到特殊的推理。


类比推理的一般步骤:

(1)找出两类事物之间的相似性或一致性;
(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);
(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;
(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。

归纳推理的一般步骤:

①通过观察个别情况发现某些相同性质;
②从已知的相同性质中推出一个明确表达的一般性命题(猜想).

归纳推理和类比推理的特点:

归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理。

归纳推理的应用方法:

归纳推理是由部分到整体、由个别到一般的推理,要注意探求的对象的本质属性与因果关系.与数列有关的问题,要联想等差、等比数列,把握住数的变化规律.

类比推理的应用方法:

合情推理的正确与否来源于平时知识的积累,如平面到空间、长度到面积、面积到体积、平面中的点与空间中的直线、平面中的直线与空间巾的平面.


发现相似题
与“已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2)...”考查相似的试题有: