返回

高中三年级数学

首页
  • 解答题
    已知等差数列{an}的首项为a,公差为b,且不等式ax2-3x+2>0的解集为(-∞,1)∪(b,+∞),
    (1)求数列{an}的通项公式及前n项和Sn
    (2)比较an和Sn-4的大小。
    本题信息:2011年福建省月考题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知等差数列{an}的首项为a,公差为b,且不等式ax2-3x+2>0的解集为(-∞,1)∪(b,+∞),(1)求数列{an}的通项公式及前n项和Sn;(2)比较an和Sn-4的大小。” 主要考查您对

等差数列的通项公式

等差数列的前n项和

比较法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等差数列的通项公式
  • 等差数列的前n项和
  • 比较法

等差数列的通项公式:

an=a1+(n-1)d,n∈N*。
an=dn+a1-d,d≠0时,是关于n的一次函数,斜率为公差d;
an=kn+b(k≠){an}为等差数列,反之不能。


对等差数列的通项公式的理解:

 ①从方程的观点来看,等差数列的通项公式中含有四个量,只要已知其中三个,即可求出另外一个.其中a1和d是基本量,只要知道a1和d即可求出等差数列的任一项;
②从函数的观点来看,在等差数列的通项公式中,。。是n的一次函数,其图象是直线y=dx+(a1-d)上均匀排开的一列孤立点,我们知道两点确定一条直线,因此,给出一个等差数列的任意两项,等差数列就被唯一确定了,


等差数列公式的推导:

等差数列的通项公式可由归纳得出,当然,等差数列的通项公式也可用累加法得到:


等差数列的前n项和的公式:

(1),(2),(3),(4)
当d≠0时,Sn是关于n的二次函数且常数项为0,{an}为等差数列,反之不能。


等差数列的前n项和的有关性质

(1),…成等差数列;
(2){an}有2k项时,=kd;
(3){an}有2k+1项时,S=(k+1)ak+1=(k+1)a, S=kak+1=ka,S:S=(k+1):k,S-S=ak+1=a


解决等差数列问题常用技巧:

1、等差数列中,已知5个元素:a1,an,n,d, S中的任意3个,便可求出其余2个,即知3求2。
为减少运算量,要注意设元的技巧,如奇数个成等差,可设为…,a-2d,a-d,a,a+d,a+2d,…,偶数个成等差,可设为…,a-3d,a-d,a+d,a+3d,…
2、等差数列{an}中,(1)若ap=q,aq=p,则列方程组可得:d=-1,a1=p+q-1,ap+q=0,S=-(p+q);
(2)当Sp=Sq时(p≠q),数形结合分析可得Sn中最大,Sp+q=0,此时公差d<0。 
 


比较法分类:

(1)求差比较法:要证a>b,只要证a-b>0;
(2)求商比较法:要证a>b,且b>0,只要证>1;


比较法的步骤是:

作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。

实数比较大小的依据:

在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a、b之间具有以下性质:如图,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b,反之也成立,从而a-b>0等价于a>b;a-b=0等价于a=b;a-b<0等价于a<b. 

比较数(式)的大小常用的方法:

(1)一是利用作差法来判断差的符号;二是利用作商法(分母为正时)来判断商与1的大小。这两种方法的关键是变形,常用的变形的技巧有因式分解、通分、配方、有理化等,当两个代数式正负不确定且为多项式形式时常用作差法比较大小.当两个代数式均为正且为幂的乘积式时常用作商法比较大小.
(2)比较大小时应熟记并应用“若a>b且ab>0则”这一结论,不能强化也不能弱化条件,在此时应引起特别重视。