本试题 “已知不等式[log2n],其中n为大于2的整数,[log2n]表示不超过log2n的最大整数。设数列{an}的各项为正,且满足a1=b(b>0),an≤,n=2,3,4,…(Ⅰ)证明an<,...” 主要考查您对数列的极限
一般数列的项
反证法与放缩法
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
数列的极限定义(描述性的):
如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。
数列的极限严格定义:
即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。
数列极限的四则运算法则:
若,则
(1),;
(2),;
(3)。
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。
an无限接近于a的方式有三种:
第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,;
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是;
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,。
一些常用数列的极限:
(1)常数列A,A,A,…的极限是A;
(2)当时,;
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,。
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。
一般数列的项的定义:
数列中的每一个数叫做这个数列的项。
数列项的性质:
①数列的项具有有序性,一个数列不仅与构成数列的“数”有关,而且与这些数的排列顺序有关,注意与集合中元素的无序性区分开来,;
②数列的项具有可重复性,数列中的数可重复出现,这也要与集合中元素的互异性区分开来:
③注意an与{an}的区别:an表示数列{an}的第n 项,而{an}表示数列a1,a2,…,an,…,
方法提炼:
1.数列最大项、最小项、数列有界性问题可借助数列的单调性来解决,判断单调性时常用(1)作差法;(2)作差法;(3)结合函数图像等方法;
2.若求最大项an,则an满足an≥an+1且an≥an-1;若求最小项an,则an满足an≤an+1且an≤an-1。
反证法的定义:
有些不等式无法利用题设的已知条件直接证明,我们可以用间接的方法——反证法去证明,即通过否定原结论——导出矛盾——从而达到肯定原结论的目的。
放缩法的定义:
把原不等式放大或缩小成一个恰好可以化简的形式,比较常用的方法是把分母或分子适当放大或缩小(减去或加上一个正数)使不等式简化易证。
反证法证题的步骤:
若A成立,求证B成立。
共分三步:
(1)提出与结论相反的假设;如负数的反面是非负数,正数的反面是非正数即0和负数;
(2)从假设出发,经过推理,得出矛盾;(必须由假设出发进行推理否则不是反证法或证错);
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.矛盾:与定义、公理、定理、公式、性质等一切已有的结论矛盾甚至自相矛盾。
反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。
放缩法的意义:
放缩法理论依据是不等式的传递性:若,a<b,b<c,则a<c.
放缩法的操作:
若求证P<Q,先证P<P1<P2<…<Pn,再证恰有Pn<Q.
需注意:(1)只有同方向才可以放缩,反方向不可。
(2)不能放(缩)得太大(小),否则不会有最后的Pn<Q.
与“已知不等式[log2n],其中n为大于2的整数,[log2n]表示不超过l...”考查相似的试题有: