本试题 “已知定点A(1,0),定直线l:x=5,动点M(x,y)(1)若M到点A的距离与M到直线l的距离之比为,试求M的轨迹曲线C1的方程;(2)若曲线C2是以C1的焦点为顶点,...” 主要考查您对椭圆的定义
双曲线的定义
双曲线的标准方程及图象
直线与双曲线的应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
椭圆的第一定义:
平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。
椭圆的第二定义:
平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。
椭圆的定义应该包含几个要素:
双曲线第一定义:
平面内与两定点F1,F2的距离的差的绝对值等于定长2a(小于|F1F2|)的点的轨迹叫双曲线,即||PF1|-|PF2||=2a(2a<|F1F2|)。若2a=|F1F2|,则轨迹是以F1,F2为端点射线,若2a>|F1F2|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
双曲线的第二定义:
平面内与一个定点F和一条定直线l的距离的比是常数e(e>1)的动点的轨迹叫双曲线。
双曲线的理解:
的轨迹为近的一支; 的一支。
注:的延长线和反向延长线(两条射线);则轨迹不存在;的垂直平分线。
双曲线的标准方程:
(1)中心在原点,焦点在x轴上:;
(2)中心在原点,焦点在y轴上:。
双曲线的图像:
(1)焦点在x轴上的双曲线的图像
;
(2)焦点在y轴上的双曲线的图像
。
判断双曲线的焦点在哪个轴上:
判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.
定义法求双曲线的标准方程:
求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,
待定系数法求双曲线的标准方程:
在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求λ.若焦点不确定时,要注意分类讨论.
利用双曲线的性质求解有关问题:
要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即
几种特殊的双曲线:
等轴双曲线 | 实轴和虚轴相等的双曲线叫做等轴双曲线.离心率两条渐近线互相垂直 |
共轭双曲线 |
|
共渐近线的双曲线 |
|
直线与双曲线:
设直线l的方程为:Ax+By+C=0(A、B不同时为零),双曲线的方程:,将直线的方程代入双曲线的方程,消去y(或x)得到一元二次方程,进而应用根与系数的关系解题。
双曲线的综合问题:
双曲线知识通常与圆、椭圆、抛物线或数列、向量及不等式、三角函数相联系,综合考查数学知识及应用是高考的重点,应用中应注意对知识的综合及分析能力,双曲线的标准方程和几何性质中涉及很多基本量,如“a,b,c,e"树立基本量思想对于确定双曲线方程和认识其几何性质有很大帮助.另外,渐近线是双曲线特有的,双曲线的渐近线方程可记为
与“已知定点A(1,0),定直线l:x=5,动点M(x,y)(1)若M到...”考查相似的试题有: