返回

高中二年级数学

首页
  • 解答题
    已知定点A(1,0),定直线l:x=5,动点M(x,y)
    (1)若M到点A的距离与M到直线l的距离之比为,试求M的轨迹曲线C1的方程;
    (2)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程;
    (3)是否存在过点F(,0)的直线m,使其与曲线C2交得弦|PQ|长度为8呢?
    若存在,则求出直线m的方程;若不存在,试说明理由.
    本题信息:2012年期末题数学解答题难度较难 来源:褚洪学(高中数学)
  • 本题答案
    查看答案
本试题 “已知定点A(1,0),定直线l:x=5,动点M(x,y)(1)若M到点A的距离与M到直线l的距离之比为,试求M的轨迹曲线C1的方程;(2)若曲线C2是以C1的焦点为顶点,...” 主要考查您对

椭圆的定义

双曲线的定义

双曲线的标准方程及图象

直线与双曲线的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 椭圆的定义
  • 双曲线的定义
  • 双曲线的标准方程及图象
  • 直线与双曲线的应用

椭圆的第一定义:

平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。

椭圆的第二定义:

平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。


椭圆的定义应该包含几个要素:

 
利用椭圆的定义解题:
 
当题目中出现一点在椭圆上的条件时,注意使用定义

双曲线第一定义:

平面内与两定点F1,F2的距离的差的绝对值等于定长2a(小于|F1F2|)的点的轨迹叫双曲线,即||PF1|-|PF2||=2a(2a<|F1F2|)。若2a=|F1F2|,则轨迹是以F1,F2为端点射线,若2a>|F1F2|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

双曲线的第二定义:

平面内与一个定点F和一条定直线l的距离的比是常数e(e>1)的动点的轨迹叫双曲线。


双曲线的理解:

的轨迹为近的一支; 的一支。
注:的延长线和反向延长线(两条射线);则轨迹不存在;的垂直平分线。


双曲线的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
双曲线的图像:

(1)焦点在x轴上的双曲线的图像

(2)焦点在y轴上的双曲线的图像


判断双曲线的焦点在哪个轴上:

判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.

定义法求双曲线的标准方程:

求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,

待定系数法求双曲线的标准方程:

在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求λ.若焦点不确定时,要注意分类讨论.

利用双曲线的性质求解有关问题:

要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即


几种特殊的双曲线:

等轴双曲线 实轴和虚轴相等的双曲线叫做等轴双曲线.离心率两条渐近线互相垂直
共轭双曲线
共渐近线的双曲线

直线与双曲线:

设直线l的方程为:Ax+By+C=0(A、B不同时为零),双曲线的方程:,将直线的方程代入双曲线的方程,消去y(或x)得到一元二次方程,进而应用根与系数的关系解题。


双曲线的综合问题:

双曲线知识通常与圆、椭圆、抛物线或数列、向量及不等式、三角函数相联系,综合考查数学知识及应用是高考的重点,应用中应注意对知识的综合及分析能力,双曲线的标准方程和几何性质中涉及很多基本量,如“a,b,c,e"树立基本量思想对于确定双曲线方程和认识其几何性质有很大帮助.另外,渐近线是双曲线特有的,双曲线的渐近线方程可记为

为渐近线的双曲线方程可设为.特别地,等轴双曲线方程可设为
的垂直关系的证明可以通过来证明,也可以通过来证明,它体现了证明解析几何问题方法的多样性.