返回

高中数学

首页
  • 填空题
    已知函数f(x)=x2-|x|,则不等式f(log3
    1
    x+1
    )<2
    的解为______.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数f(x)=x2-|x|,则不等式f(log31x+1)<2的解为______.” 主要考查您对

二次函数的性质及应用

对数函数的解析式及定义(定义域、值域)

对数函数的图象与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 二次函数的性质及应用
  • 对数函数的解析式及定义(定义域、值域)
  • 对数函数的图象与性质

二次函数的定义:

一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。

二次函数的图像

是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴
③有顶点
④c表示抛物线与y轴的交点坐标:(0,c)。

性质:二次函数y=ax2+bx+c,

①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数;
②当a<0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。


二次函数(a,b,c是常数,a≠0)的图像:

图像 函数的性质
a>0 定义域 x∈R(个别题目有限制的,由解析式确定)
 
值域 a>0 a<0
 
奇偶性 b=0时为偶函数,b≠0时为非奇非偶函数
a<0 单调性 a>0 a<0
图像特点

二次函数的解析式:

(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为 ;
(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为


二次函数在闭区间上的最值的求法:

(1)二次函数 在区间[p,g]上的最值问题
一般情况下,需要分三种情况讨论解决.
当a>0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令 .
 



特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.

(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:
 
特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。

二次函数的应用

(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。


对数函数的定义:

一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。

对数函数的解析式:

y=logax(a>0,且a≠1)


在解有关对数函数的解析式时注意

在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。


对数函数的图形:


对数函数的图象与性质


对数函数与指数函数的对比:

 (1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.
 (2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.
 (3)指数函数与对数函数的联系与区别:




对数函数单调性的讨论:

解决与对数函数有关的函数单调性问题的关键:一是看底数是否大于l,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性,但应注意中间变量的取值范围;三要注意其定义域(这是一个隐形陷阱),也就是要坚持“定义域优先”的原则.

利用对数函数的图象解题

涉及对数型函数的图象时,一般从最基本的对数函数的图象人手,通过平移、伸缩、对称变换得到对数型函数的图象,特别地,要注意底数a>l与O<a<l的两种不同情况,


底数对函数值大小的影响

1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O<a<l时,底数越小,函数图象越靠近x轴.利用这一规律,我们可以解决真数相同、对数不等时判断底数大小的问题.
 

2.类似地,在同一坐标系中分别作出的图象,如图所示,它们的图象在第一象限的规律是:直线x=l把第一象限分成两个区域,每个区域里对数函数的底数都是由右向左逐渐减小,比如分别对应函数,则必有