返回

高中数学

首页
  • 解答题
    如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
    (1)求证:BE平面PDF;
    (2)求证:平面PDF⊥平面PAB;
    (3)求三棱锥P-DEF的体积.
    魔方格

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面PDF;(2)求证:平面PDF⊥平面...” 主要考查您对

柱体、椎体、台体的表面积与体积

直线与平面平行的判定与性质

平面与平面平行的判定与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 柱体、椎体、台体的表面积与体积
  • 直线与平面平行的判定与性质
  • 平面与平面平行的判定与性质

侧面积和全面积的定义:

(1)侧面积的定义:把柱、锥、台的侧面沿着它们的一条侧棱或母线剪开,所得到的展开图的面积,就是空间几何体的侧面积.
(2)全面积的定义:空间几何体的侧面积与底面积的和叫做空间几何体的全面积, 

柱体、锥体、台体的表面积公式(c为底面周长,h为高,h′为斜高,l为母线)

柱体、锥体、台体的体积公式:




多面体的侧面积与体积:

多面体 图像 侧面积 体积
棱柱
直棱柱的侧面展开图是矩形
棱锥
正棱柱的侧面展开图是一些全等的等腰三角形,
棱台
正棱台的侧面展开图是一些全等的等腰梯形,
  

旋转体的侧面积和体积:

旋转体 图形 侧面积与全面积 体积
圆柱
圆柱的侧面展开图的矩形:
圆锥
圆锥的侧面展开图是扇形:
圆台
圆台的侧面展开图是扇环:

线面平行的定义:

若直线和平面无公共点,则称直线和平面平行。

图形表示如下:

线面平行的判定定理:

平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行

符号语言:

 线面平行的性质定理:

如果一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 线面平行线线平行

 符号语言:


 


证明直线与平面平行的常用方法:

(l)反证法,即 
(2)判定定理法,即 
(3)面面平行的性质定理,即 
(4)向量法,平面外的直线的方向向量n与平面的法向量n垂直,则直线与平面平行,即


面面平行的定义:

如果两个平面无公共点,则称这两个平面平行。

图形表示:


面面平行的判定定理:

(1)如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行; (线面平行面面平行),
(2)如果一个平面内有两条相交直线分别平行于另一平面内的两条直线,那么这两个平面平行。(线线平行面面平行),
(3)垂直于同一条直线的两个平面平行。
(4)平行于同一个平面的两个平面平行。

符号语言:
(1) ;(3) ;(4)

面面平行的性质定理:

(1)如果两个平行平面同时与第三个平面相交,那么它们的交线平行。 (面面平行线线平行)
(2)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。 (面面平行线面平行)
(3)如果两个平行平面中有一个平面垂直于一条直线,那么另一个平面也垂直于这条直线。

符号语言:
(1) ;(2) ;(3)


线线平行、线面平行、面面平行间的关系:

由于三者之间相互沟通、相互联系,因此立体几何问题的解决往往一题多解(证)。

证明面面平行的常用方法:

(1)反证法,即
(2)判定定理或推论,即
(3)“垂直于同一直线的两个平面平行”这一性质,即 
(4)向量法,两个平面的法向量平行,则这两个平面平行。


发现相似题
与“如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,P...”考查相似的试题有: