返回

高中数学

首页
  • 填空题
    用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:
    ①若ab,bc,则ac;②若a⊥b,b⊥c,则a⊥c;
    ③若aγ,bγ,则ab;④若a⊥γ,b⊥γ,则ab.
    其中真命题的序号是______.
    本题信息:2012年惠州模拟数学填空题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的...” 主要考查您对

真命题、假命题

空间中直线与直线的位置关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 空间中直线与直线的位置关系

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


异面直线:

不同在任何一个平面内的两条直线。

空间中直线与直线的位置关系有且只有三种 :

异面直线的判定:

过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线。
用符号语言可表示为:

异面直线的画法:
 

 


公理4:

平行于同一条直线的两条直线互相平行。

等角定理:

空间中,如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。


异面直线的性质:

既不平行,又不相交;


证明线线平行的常用方法:

①利用定义,证两线共面且无公共点;
②利用公理4,证两线同时平行于第三条直线;
③利用线面平行的性质定理把证线线平行转化为证线面平行,转化思想在立体几何中贯穿始终,转化的途径是把空间问题转化为平面问题;
④三角形的中位线;
⑤证两线是平行四边形的对边.


发现相似题
与“用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若...”考查相似的试题有: