返回

高中三年级数学

首页
  • 解答题
    已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*)。
    (1)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),存在,求的值;
    (2)若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明对任意n∈N*,an+1<an(用t表示)。
    本题信息:2007年辽宁省高考真题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*)。(1)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),存在...” 主要考查您对

数列的极限

一般数列的项

数学归纳法证明不等式

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 数列的极限
  • 一般数列的项
  • 数学归纳法证明不等式

数列的极限定义(描述性的):

如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。

数列的极限严格定义

即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。

数列极限的四则运算法则:

,则
(1)
(2)
(3)
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。


an无限接近于a的方式有三种:

第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,


一些常用数列的极限:

(1)常数列A,A,A,…的极限是A;
(2)当时,
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。


一般数列的项的定义:

数列中的每一个数叫做这个数列的项。


数列项的性质:

①数列的项具有有序性,一个数列不仅与构成数列的“数”有关,而且与这些数的排列顺序有关,注意与集合中元素的无序性区分开来,;
②数列的项具有可重复性,数列中的数可重复出现,这也要与集合中元素的互异性区分开来:
③注意an与{an}的区别:an表示数列{an}的第n 项,而{an}表示数列a1,a2,…,an,…,


方法提炼:

1.数列最大项、最小项、数列有界性问题可借助数列的单调性来解决,判断单调性时常用(1)作差法;(2)作差法;(3)结合函数图像等方法;
2.若求最大项an,则an满足an≥an+1且an≥an-1;若求最小项an,则an满足an≤an+1且anan-1。


归纳法的定义:

由有限多个个别的特殊事例得出一般结论的推理方法,称为归纳法。


数学归纳法证明不等式的步骤:

(1)证明当n取初始值n0(例如n0=0,n0=1等)时不等式成立;
(2)假设当n=k(k为自然数,k≥n0)时不等式成立,证明当n=k+1时不等式也成立。

对数学归纳法的理解:

(1)数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确。
(2)运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n=k+1命题成立时必须要用到n=k时命题成立这个条件.这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.