返回

高中一年级数学

首页
  • 填空题
    给出下列命题:
    (1)存在实数x,使得sinx+cosx=
    (2)函数的图像关于点对称;
    (3)△ABC中,sinA>sinB的充要条件是A>B;
    (4)在平行四边形ABCD中,若,则四边形ABCD的形状一定是矩形;
    则其中正确的是(    )。(将正确判断的序号都填上)
    本题信息:2009年0103期末题数学填空题难度一般 来源:张玲玲
  • 本题答案
    查看答案
本试题 “给出下列命题:(1)存在实数x,使得sinx+cosx=;(2)函数的图像关于点对称;(3)△ABC中,sinA>sinB的充要条件是A>B;(4)在平行四边形ABCD中,若,则四...” 主要考查您对

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

函数y=Asin(wx+φ)的图象与性质

向量的线性运算及坐标表示

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
  • 函数y=Asin(wx+φ)的图象与性质
  • 向量的线性运算及坐标表示

正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。


函数的图象:

1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,
单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。
2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。
3、函数+K的图象与y=sinx的图象的关系:
把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ)
把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的y=sin(ωx+φ)
把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)
把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K;
若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。


函数y=Asin(x+φ)的性质:

1、y=Asin(x+φ)的周期为
2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。


向量的线性运算:

向量的线性运算是指向量的加、减、数乘的运算;对于任意向量a,b以及任意实数 

向量的线性运算的坐标表示:

,任意实数λ,m,n,则


平面向量的几个重要结论:

(1)若a、b为不共线向量,则a+b、a-b是以a、b为邻边的平行四边形的对角线的向量.如图:
 
 


发现相似题
与“给出下列命题:(1)存在实数x,使得sinx+cosx=;(2)函数的...”考查相似的试题有: