本试题 “已知向量a=(sinx,cosx),b=(1,一2),且a⊥b,则tan(2x+π4)=______.” 主要考查您对两角和与差的三角函数及三角恒等变换
用数量积判断两个向量的垂直关系
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
两角和与差的公式:
倍角公式:
半角公式:
万能公式:
三角函数的积化和差与和差化积:
三角恒等变换:
寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。
(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.
方法提炼:
(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.
两向量垂直的充要条件:
非零向量,那么,所以可以根据此公式判断两个向量是否垂直。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
与“已知向量a=(sinx,cosx),b=(1,一2),且a⊥b,则tan(2x+π...”考查相似的试题有: