返回

高中数学

首页
  • 填空题
    已知向量
    a
    =(sinx,cosx),
    b
    =(1,一2),且
    a
    b
    ,则tan(2x+
    π
    4
    )
    =______.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知向量a=(sinx,cosx),b=(1,一2),且a⊥b,则tan(2x+π4)=______.” 主要考查您对

两角和与差的三角函数及三角恒等变换

用数量积判断两个向量的垂直关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 两角和与差的三角函数及三角恒等变换
  • 用数量积判断两个向量的垂直关系

两角和与差的公式:






倍角公式:



半角公式:


万能公式:

三角函数的积化和差与和差化积:








三角恒等变换:

寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。


三角函数式化简要遵循的"三看"原则:

(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.

方法提炼:

(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.


两向量垂直的充要条件:

非零向量,那么,所以可以根据此公式判断两个向量是否垂直。


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,